Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma.
BackgroundCharcot Neuro-Arthropathy (CN) is one of the more devastating complications of diabetes. To the best of the authors’ knowledge, it appears that no clinical tools based on a systematic review of existing literature have been developed to manage acute CN. Thus, the aim of this paper was to systematically review existing literature and develop an evidence-based clinical pathway for the assessment, diagnosis and management of acute CN in patients with diabetes.MethodsElectronic databases (Medline, PubMed, CINAHL, Embase and Cochrane Library), reference lists, and relevant key websites were systematically searched for literature discussing the assessment, diagnosis and/or management of acute CN published between 2002-2012. At least two independent investigators then quality rated and graded the evidence of each included paper. Consistent recommendations emanating from the included papers were then fashioned in a clinical pathway.ResultsThe systematic search identified 267 manuscripts, of which 117 (44%) met the inclusion criteria for this study. Most manuscripts discussing the assessment, diagnosis and/or management of acute CN constituted level IV (case series) or EO (expert opinion) evidence. The included literature was used to develop an evidence-based clinical pathway for the assessment, investigations, diagnosis and management of acute CN.ConclusionsThis research has assisted in developing a comprehensive, evidence-based clinical pathway to promote consistent and optimal practice in the assessment, diagnosis and management of acute CN. The pathway aims to support health professionals in making early diagnosis and providing appropriate immediate management of acute CN, ultimately reducing its associated complications such as amputations and hospitalisations.
The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103 + CD11b − dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma.bacterial immunomodulation | allergy and asthma prevention | tolerogenic dendritic cells | bacterial persistence determinants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.