Coronavirus-2019 (COVID-19) predisposes patients to arterial and venous thrombosis commonly complicating the clinical course of hospitalized patients and attributed to the inflammatory state, endothelial dysfunction, platelet activation and blood stasis. This viral coagulopathy may occur despite thromboprophylaxis and raises mortality; the risk appears highest among critically ill inpatients monitored in the intensive care unit. The prevalence of venous thromboembolism in COVID-19 patients has been reported to reach ∼10-35%, while autopsies raise it to nearly 60%. The most common thrombotic complication is pulmonary embolism, which though may occur in the absence of a recognizable deep venous thrombosis and may be due to pulmonary arterial thrombosis rather than embolism, resulting in thrombotic occlusion of small- to mid-sized pulmonary arteries and subsequent infarction of lung parenchyma. This micro-thrombotic pattern seems more specific for COVID-19 and is associated with an intense immuno-inflammatory reaction that results in diffuse occlusive thrombotic micro-angiopathy with alveolar damage and vascular angiogenesis. Furthermore, thrombosis has also been observed in various arterial sites, including coronary, cerebral and peripheral arteries. Biomarkers related to coagulation, platelet activation and inflammation have been suggested as useful diagnostic and prognostic tools for COVID-19-associated coagulopathy; among them, D-dimer remains a key biomarker employed in clinical practice. Various medical societies have issued guidelines or consensus statements regarding thromboprophylaxis and treatment of these thrombotic complications specifically adapted to COVID-19 patients. All these issues are detailed in this review, data from meta-analyses and current guidelines are tabulated, while the relevant mechanisms of this virus-associated coagulopathy are pictorially illustrated.
Highlights
Serious cardiac arrhythmias may be the consequence of direct effects of COVID-19 infection, but also the outcome of the deleterious effects of systemic illness and the adverse proarrhythmic reactions to drugs employed in the treatment of this pandemic
Drug combinations, especially of QT-prolonging agents, can lead to higher arrhythmogenicity, compared with single drug therapies
Furthermore, critically ill COVID-19 patients often have comorbidities that can trigger life-threatening ventricular arrhythmias, while acute myocardial injury increases the prevalence of arrhythmias
ECG and QTc monitoring and taking appropriate measures are of critical importance to prevent, detect and manage cardiac arrhythmias in COVID-19 patients
Contactless monitoring and telemetry for inpatients, especially those admitted to the ICU, as well as for outpatients needing continued management, has recently been facilitated by implementing digital health monitoring tools
The degree of myocardial injury incurred by RFA is far more accurately assessed by cTnI levels rather than by CK-MB measurements. Cardiac troponin I levels correlate with the number of RF lesions applied, the site of RFA and the approach to the mitral annulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.