Extracellular matrix controls capillary endothelial cell sensitivity to soluble mitogens by binding integrin receptors and thereby activating a chemical signaling response that rapidly integrates with growth factor-induced signaling mechanisms. Here we report that in addition to integrins, growth factor receptors and multiple molecules that transduce signals conveyed by both types of receptors are immobilized on the cytoskeleton (CSK) and spatially integrated within the focal adhesion complex (FAC) at the site of integrin binding. FACs were rapidly induced in round cells and physically isolated from the remainder of the CSK after detergent-extraction using magnetic microbeads coated with fibronectin or a synthetic RGD-containing peptide. Immunofluorescence microscopy revealed that multiple signaling molecules (e.g., pp60csrc, ppl25FAKphosphatidylinositol-3-kinase, phospholipase C-'y, and Na+/H+ antiporter) involved in both integrin and growth factor receptor signaling pathways became associated with the CSK framework of the FAC within 15 min after binding to beads coated with integrin ligands. Recruitment of tyrosine kinases to the FAC was also accompanied by a local increase in tyrosine phosphorylation, as indicated by enhanced phosphotyrosine staining at the site of integrin binding. In contrast, neither recruitment of signaling molecules nor increased phosphotyrosine staining was observed when cells bound to beads coated with a control ligand (acetylated low density lipoprotein) that ligates transmembrane scavenger receptors, but does not induce FAC formation. Western blot analysis confirmed that FACs isolated using RGD-beads were enriched for pp6Ocsrc, pp125FAK, phospholipase G-y, and the Na+ /H+ antiporter when compared with intact CSK or basal cell surface preparations that retained lipid bilayer. Isolated FACs were also greatly enriched for the high affinity fibroblast growth factor receptor flg. Most importantly, isolated FACs continued to exhibit multiple chemical signaling activities in vitro, including protein tyrosine kinase activities (pp60csrc and pp125FAK) as well as the ability to undergo multiple sequential steps in the inositol lipid synthesis cascade. These data suggest that many of the chemical signaling events that are induced by integrins and growth factor receptors in capillary cells may effectively function in a "solid-state" on insoluble CSK scaffolds within the FAC and that the FAC may represent a major site for signal integration between these two regulatory pathways. Future investigations into the biochemical and biophysical basis of signal transduction may be facilitated by this method, which results in isolation of FACs that retain the CSK framework as well as multiple associated chemical signaling activities.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.
Abstract. The aim of these experiments was to investigate whether inositol lipids might mediate some of the effects of extracellular matrix (ECM) on cellular form and functions. The lipid phosphatidylinositol bisphosphate (PIP2) plays a role in cytoskeletal regulation while its hydrolysis products, diaclyglycerol and inositol triphosphate, serve as second messengers. We therefore measured the effect of adhesion to fibronectin (FN) on PIP2 and its hydrolysis products, in the presence and absence of the soluble mitogen PDGE PDGF induced a threefold increase in release of water-soluble inositol phosphates in C3H 101"1/2 fibroblasts when cells were attached to FN, but had little effect in suspended cells. Suppression of inositol phosphate release in unattached cells was not due to dysfunction of the PDGF receptor or failure to activate phospholipase C-3,; PDGF induced similar tyrosine phosphorylation of PLC-~/under both conditions. By contrast, the total mass of phosphatidylinositol bisphosphate (PIP2), the substrate for PLC-3,, was found to decrease by ,080% when cells were detached from their ECM attachments and placed in suspension in the absence of PDGF. PIP2 levels were restored when suspended cells were replated on FN, demonstrating that the effect was reversible. Furthermore, a dramatic increase in synthesis of PIP2 could be measured in cells within 2 min after reattachment to FN in the absence of PDGE These results show that FN acts directly to stimulate PIP2 synthesis, and that it also enhances PIP2 hydrolysis in response to PDGE The increase in PIP2 induced by adhesion may mediate some of the known effects of FN on cell shape and cytoskeletal organization, while regulation of inositol lipid hydrolysis may provide a means for integrating hormone-and ECM-dependent signaling pathways. THe inositol lipid pathway plays an important role in mediating the response of cells to a variety of hormones and growth factors. Hydrolysis of phosphatidylinositol bisphosphate (PIP2), 1 by PIP2-specific phospholipase C (PLC) yields the second messengers diacylglycerol (DAG) and inositol triphosphate (IP3). DAG activates protein kinase C (PKC), while IP3 triggers increased cytoplasmic calcium due to release from intracellular stores. In addition to its role as a substrate for PLC, PIP2 itself binds to the cytoskeletal proteins profilin (Lassing and Lindberg, 1985), gelsolin (Janmey and Stossel, 1987) and cx-actinin (Fukami et al., 1992), causing release of actin by profilin and gelsolin, and enhanced binding of actin to c¢-actinin.Recent studies demonstrate that extracellular matrix (ECM) molecules also activate intracellular chemical signalAddress all correspondence to M. A. Schwartz at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.