In the proliferative zone of the developing cerebral cortex, multipotential progenitors predominate early in development and divide to increase the progenitor pool. As corticogenesis progresses, proportionately fewer progenitors are produced and, instead, cell divisions yield higher numbers of postmitotic neurones or glial cells. As the switch from the generation of progenitors to that of differentiated cells occurs, the orientation of cell division alters from predominantly symmetrical to predominantly asymmetrical. It has been hypothesised that symmetrical divisions expand the progenitor pool, whereas asymmetrical divisions generate postmitotic cells, although this remains to be proved. The molecular mechanisms regulating these processes are poorly understood. The transcription factor Pax6 is highly expressed in the cortical proliferative zone and there are morphological defects in the Pax6Sey/Sey (Pax6 null) cortex, but little is known about the principal cellular functions of Pax6 in this region. We have analysed the cell-cycle kinetics, the progenitor cleavage orientation and the onset of expression of differentiation markers in Pax6Sey/Sey cortical cells in vivo and in vitro. We showed that, early in corticogenesis at embryonic day (E) 12.5, the absence of Pax6 accelerated cortical development in vivo, shortening the cell cycle and the time taken for the onset of expression of neural-specific markers. This also occurred in dissociated culture of isolated cortical cells, indicating that the changes were intrinsic to the cortical cells. From E12.5 to E15.5, proportions of asymmetrical divisions increased more rapidly in mutant than in wild-type embryos. By E15.5, interkinetic nuclear migration during the cell cycle was disrupted and the length of the cell cycle was significantly longer than normal in the Pax6Sey/Sey cortex, with a lengthening of S phase. Together, these results show that Pax6 is required in developing cortical progenitors to control the cell-cycle duration, the rate of progression from symmetrical to asymmetrical division and the onset of expression of neural-specific markers.
Pax6 is a member of an evolutionarily conserved family of transcription factors. It is developmentally regulated and is required for the normal embryonic development of the central nervous system, eye and pancreas. Pax6 mutations in the mouse result in the Small eye (Sey) phenotype. Heterozygous mice have eye defects and homozygotes die immediately after birth lacking eyes, nasal cavities and with severe brain abnormalities, including a malformed cerebral cortex. Recent work has established that there are changes in expression of cell adhesion molecules and these may underlie at least a part of the Pax6(Sey/Sey) phenotype. Here we used cell transplants and explant cultures to investigate the role of Pax6 in cell adhesion. Pax6(Sey/Sey) embryonic cortical cells transplanted into wild-type embryonic cortex were observed to segregate from wild-type cells and form dense clusters. Cells migrating from explants of Pax6(Sey/Sey) embryonic cortex clustered to a greater extent than cells migrating from wild-type controls. These new data support the hypothesis that Pax6 exerts a cell-autonomous effect on the adhesiveness of cortical cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.