The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community-weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.
Parasitic plants are one of the most ubiquitous groups of generalist parasites in both natural and managed ecosystems, with over 3,000 known species worldwide. Although much is known about how parasitic plants influence host performance, their role as drivers of community- and ecosystem-level properties remains largely unexplored. Parasitic plants have the potential to influence directly the productivity and structure of plant communities because they cause harm to particular host plants, indirectly increasing the competitive status of non-host species. Such parasite-driven above-ground effects might also have important indirect consequences through altering the quantity and quality of resources that enter soil, thereby affecting the activity of decomposer organisms. Here we show in model grassland communities that the parasitic plant Rhinanthus minor, which occurs widely throughout Europe and North America, has strong direct effects on above-ground community properties, increasing plant diversity and reducing productivity. We also show that these direct effects of R. minor on the plant community have marked indirect effects on below-ground properties, ultimately increasing rates of nitrogen cycling. Our study provides evidence that parasitic plants act as a major driver of both above-ground and below-ground properties of grassland ecosystems.
Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability.
Summary1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To test whether management for biodiversity restoration has additional benefits for soil C sequestration, we investigated C and nitrogen (N) accumulation rates in soil and C and N pools in vegetation in a long-term field experiment (16 years) in which fertilizer application and plant seeding were manipulated. In addition, the abundance of the legume Trifolium pratense was manipulated for the last 2 years. To unravel the mechanisms underlying changes in soil C and N pools, we also tested for effects of diversity restoration management on soil structure, ecosystem respiration and soil enzyme activities. 3. We show that the long-term biodiversity restoration practices increased soil C and N storage especially when these treatments were combined with the recent promotion of the legume Trifolium pratense, sequestering 317 g C and 35 g N m )2 year )1 in the most successful management treatment. These high rates of C and N accumulation were associated with reduced ecosystem respiration, increased soil organic matter content and improved soil structure. Cessation of fertilizer use, however, reduced the amount of C and N contained in vegetation. 4. Synthesis and applications. Our findings show that long-term diversity restoration practices can yield significant benefits for soil C storage when they are combined with increased abundance of a single, sub-ordinate legume species. Moreover, we show that these management practices deliver additional ecosystem benefits such as N storage in soil and improved soil structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.