The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. ~SN labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha-l to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7-15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH + -N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.
Three field experiments were undertaken concurrently at one site to evaluate a range of surface-applied nBTPT-amended urea products (0.01, 0.05, 0.1, 0.25 and 0.5% nBTPT w/w) on NH3 volatilization, grass yield and 15N recovery in the plant-soil system. Each experiment was repeated on five separate occasions over the 1992 growing season to cover a range of weather conditions. Total NH3 loss from unamended-urea ranged from 5.5% in early May to 20.8% in June. The inhibitor was highly effective in reducing ammonia volatilization and delaying the time at which maximum rate of NH3 loss occurred. Over all time periods the % inhibition was 50.4, 82.8, 89.0, 96.5 and 97.0% at the 0.01, 0.05, 0.1, 0.25 and 0.5% nBTPT levels respectively. There was no significant difference in the overall % inhibition in ammonia loss at different times suggesting that the effectiveness of the inhibitor was not dependent on climatic conditions. Over all times incorporation of nBTPT at the 0.05% level increased dry-matter yield by 9% compared to urea alone and increased the shoot recovery of N from 66.7% to 80.9%. Nitrogen saved from volatilization was taken up by the plant, however, the subsequent translation into dry-matter yield appeared to be adversely affected at the high inhibitor rates.There was no significant effect of inhibitor on 15N recovery in soil at any depth down to 15 cms. nBTPT significantly increased (p < 0.001) the % N derived from fertilizer (% N dff) in the shoot compared to unamended-urea and increased (p < 0.01) the shoot recovery of tSN from 32% up to 39%. Total 15N recovery in the soil-plant system was increased by up to 17% by amending urea with nBTPT. This urease inhibitor has been shown to improve the efficiency of urea however, its potential for the European market will be dependent on economic factors.
The kinetic constants and reaction mechanism of human erythrocyte adenine phosphoribosyltransferase from individuals whose enzyme activities have high, intermediate, or low degrees of stability to heat inactivation, and in a human mutant with reduced activity of this enzyme, have been measured. The Michaelis constants for one or both substrates are different from normal in seven mutants.
The inducible cholinesterase produced by the Goldstein strain of 3Pseudonzonas $uorescelzs was purified t o a state of electrophoretic homogeneity. The enzyme, which resembles a n acetylcholinesterase in its s~abstrate specificity, has a high affinity for acetylcholiale a i d propionylcholine. The estinaated values of K, a t pH 7.4 and 37 "C are 1.4 X 10-6 11.1 for acetylchoIiile and 2.0 X llf for propicanylchdine. The bacterial cholinesterase reacts very slowly with tetraethyl pyrophosghate (TEPP) and diisopropyl phosphorofluoridate (DFP) but coinparatively rapidly with ethyl N,N-dimethylphosphoran1idocyanidate (Tabual). Birnolecnlar rate constants range from 7.7 mol-I min-l for TEFP to 7.4 X lo4 mol-1 min-1 for Tabun. The reactions of the chdinesterase depend upon the ionic state of groups ill the enzyme whose pK, values are in the same range as those reported for other esterases. The results suggest that the enzyme inay be similar in structure t o other cholinesterases, and that both histidine and serine may be involved in its activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.