Microbes may play a key role in the mobilization of arsenic present in elevated concentrations within the aquifers extensively exploited for irrigation and drinking water in West Bengal, Bangladesh, and in other regions of South‐East Asia. Microcosm experiments using Cambodian sediments (which are also representative of other similar reducing aquifers containing arsenic‐rich waters) show that arsenic release and iron reduction are microbially mediated and demonstrate that the type of organic matter present, not necessarily the total abundance of organic matter, is important in controlling the rate and magnitude of microbially mediated arsenic release from these aquifer sediments. The possible role of naturally occurring petroleum in stimulating this process is also demonstrated. In addition to acting as an electron donor, certain types of organic matter may accelerate arsenic release by acting as an electron shuttle, indicating a dual role for organic matter in the process. The results also suggest that the fine‐grained sediment regions of these aquifers are particularly vulnerable to accelerated arsenic release following the introduction of labile organic carbon.
Our recent discovery of hazardous concentrations of arsenic in shallow sedimentary aquifers in Cambodia raises the spectre of future deleterious health impacts on a population that, particularly in non-urban areas, extensively use untreated groundwater as a source of drinking water and, in some instances, as irrigation water. We present here small-scale hazard maps for arsenic in shallow Cambodian groundwaters based on >1000 groundwater samples analysed in the Manchester Analytical Geochemistry Unit and elsewhere. Key indicators for hazardous concentrations of arsenic in Cambodian groundwaters include: (1) well depths greater than 16 m; (2) Holocene host sediments; and (3) proximity to major modern channels of the Mekong (and its distributary the Bassac). However, high-arsenic well waters are also commonly found in wells not exhibiting these key characteristics, notably in some shallower Holocene wells, and in wells drilled into older Quaternary and Neogene sediments.It is emphasized that the maps and tables presented are most useful for identifying current regional trends in groundwater arsenic hazard and that their use for predicting arsenic concentrations in individual wells, for example for the purposes of well switching, is not recommended, particularly because of the lack of sufficient data (especially at depths >80 m) and because, as in Bangladesh and West Bengal, there is considerable heterogeneity of groundwater arsenic concentrations on a scale of metres to hundreds of metres. We have insufficient data at this time to determine unequivocally whether or not arsenic concentrations are increasing in shallow Cambodian groundwaters as a result of groundwater-abstraction activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.