Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9 (HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes.
Background: Obstructive sleep apnoea (OSA) is associated with high cardiovascular morbidity and mortality and is an independent risk factor for hypertension. Novel circulating cardiovascular risk markers enabling a more accurate prediction of cardiovascular risk have been identified. Examination of these markers may clarify the increased risk in OSA and contribute to an analysis of the benefits of treatment. Methods: Plasma levels of total cholesterol and triglyceride and activated coagulation factors XIIa and VIIa, factors VII, VIII, XII, fibrinogen, thrombin-antithrombin (TAT), von Willebrand factor antigen (vWFAg), soluble P-selectin (sP-sel), and homocysteine were measured before and after treatment for 1 month with therapeutic or subtherapeutic (control) continuous positive airways pressure (CPAP) in 220 patients with OSA. Results: Levels of activated coagulation factors XIIa, VIIa, TAT and sP-sel were higher in OSA patients at baseline than in unmatched controls, but did not fall with 1 month of therapeutic CPAP treatment. The raised sP-sel levels correlated only with body mass index (p = 0.002). There was a trend towards a significant fall in total cholesterol with therapeutic CPAP (p = 0.06) compared with the control group. In the therapeutic group there was a clinically significant mean fall in total cholesterol of 0.28 mmol/l (95% confidence interval 0.11 to 0.45, p = 0.001) which may reduce cardiovascular risk by about 15%. Conclusion: A number of activated coagulation factors are increased in untreated OSA patients, potentially contributing to vascular risk, but they do not fall with 1 month of CPAP treatment. Nasal CPAP may produce a clinically relevant fall in total cholesterol level, potentially reducing cardiovascular risk, but this needs to be verified in a larger prospective study.
SummaryAlthough haematology analysers provide reliable full blood counts, they are known to be inaccurate at enumerating platelets in severe thrombocytopenia. If the thresholds for platelet transfusion, currently set at 10 · 10 9 /l, are to be further reduced, it is vital that the limitations of current analysers are fully understood. The aim of this large multicentre study was to determine the accuracy of haematology analysers in current routine practice for platelet counts below 20 · 10 9 /l. Platelet counts estimated by analysers using optical, impedance and immunological methods were compared with the International Reference Method for platelet counting. The results demonstrated variation in platelet counting between different analysers and even the same type of analyser at different sites. Optical methods for platelet counting on the XE 2100, Advia 120, Cell-Dyn 4000 and H3* were not superior to impedance methods on the XE 2100, LH750 and Pentra analysers. All analysers except one overestimated the platelet count, which would result in under transfusion of platelets. This study highlights the inaccuracies of haematology analysers in platelet counting in severe thrombocytopenia. It re-emphasizes the need for external quality control to improve analyser calibration for samples with low platelet counts, and suggests that the optimal thresholds for prophylactic platelet transfusions should be re-evaluated.
Summary Introduction The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading approach to the identification of novel biological pathways for human disease. To date, GWAS have had been limited by relatively small sample sizes and yielded relatively few loci associated with ischemic stroke The National Institute of Neurological Disorders Stroke Genetics Network (NINDS-SiGN) is an international consortium that has taken a systematic approach to phenotyping and produced the largest ischemic stroke GWAS to date. Methods In order to identify genetic loci associated with ischemic stroke, we performed a two-stage genome-wide association study. The first stage consisted of 16,851 cases with state-of-the-art phenotyping and 32,473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtyped by centrally trained and certified investigators using the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identify samples genotyped on (nearly) identical arrays and of similar genetic ancestral background. Data was cleaned and imputed using dense imputation reference panels generated from whole-genome sequence data. Genome-wide testing was performed within each stratum for each available phenotype, and summary level results were combined using inverse variance-weighted fixed effects meta-analysis. The second stage consisted of in silico look-ups of 1,372 SNPs in 20,941 cases and 364,736 stroke-free controls, with cases previously subtyped using the TOAST classification system according to local standards. The two stages were then jointly analyzed in a final meta-analysis. Findings We identified a novel locus at 1p13.2 near TSPAN2 associated with large artery atherosclerosis (LAA)-related stroke (stage I OR for the G allele at rs12122341 = 1·21, p = 4.50 × 10−8; stage II OR = 1·19, p = 1·30 × 10−9). We also confirmed four loci robustly associated with ischemic stroke and reported in prior studies, including PITX2 and ZFHX3 for cardioembolic stroke, and HDAC9 for LAA stroke. The 12q24 locus near ALDH2, originally associated with all ischemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke. Other loci, including NINJ2, were not confirmed. Interpretation Our results identify a novel LAA-stroke susceptibility gene and now indicate that all loci implicated by GWAS to date are subtype specific. Follow-up studies will be necessary to determine whether the locus near TSPAN2 yields a novel therapeutic approach to stroke prevention. Given the subtype-specificity of these associations, the rich phenotyping available in SiGN is likely to prove vital for further genetic discovery in ischemic stroke. Funding National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.