Abusive head trauma (AHT) is the leading cause of infant death and long-term morbidity from injury. The ocular consequences of AHT are controversial, and the pathophysiology of retinal research findings is still not clearly understood. It has been postulated that vitreoretinal traction plays a major role in the retinal findings. A computer simulation model was developed to evaluate the vitreoretinal traction and determine whether the distribution of forces in different layers and locations of the retina can explain the patterns of retinal hemorrhage (RH) seen in AHT.DESIGN: Computer simulation model study. METHODS: A computer simulation model of the pediatric eye was developed to evaluate preretinal, intraretinal, and subretinal stresses during repetitive shaking. This model was also used to examine the forces applied to various segments along blood vessels.RESULTS: Calculated stress values from the computer simulation ranged from 3-16 kPa at the vitreoretinal interface through a cycle of shaking. Maximal stress was observed at the periphery of the retina, corresponding to areas of multiple vessel bifurcations, followed by the posterior pole of the retina. Stress values were similar throughout all 3 layers of the retina (preretinal, intraretinal, and subretinal layers).CONCLUSIONS: Ocular manifestations from AHT revealed unique retinal characteristics. The model predicted stress patterns consistent with the diffuse retinal hemorrhages (RH) typically found in the posterior pole and around the peripheral retina in AHT. This computer model demonstrated that similar stress forces were produced in different layers of the retina, consistent with the finding that retinal hemorrhages are often found in multiple layers of the retina. These data can help explain the RH patterns commonly found in
Inclusion of postnatal growth rate in risk stratification will minimize the number of eye examinations performed without increasing adverse visual outcomes. The OMA-ROP model predicts neonates who gain less than 23 g/d are at higher risk for developing severe ROP. Although promising, larger cohort studies may be necessary to validate and implement new screening practices among preterm infants. [J Pediatr Ophthalmol Strabismus. 2018;55(5):326-334.].
Purpose: The D-EYE device, a new fundoscopic smartphone lens, has demonstrated its utility in a clinical setting to detect and document ocular pathology, but has not been tested in the pediatric population. A prospective study was performed to explore the application of D-EYE in pediatric fundus examinations. Methods: Patients ages 3 -18 years old underwent dilated fundus examinations by masked examiners using the video function of the D-EYE, while indirect ophthalmoscopy was performed by apediatric ophthalmologist. The examiners independently analyzed the D-EYE videos for the presence or absence of abnormalities, cup-to-disc (c/d) ratios and optic nerve size and color. The D-EYE video findings were compared to indirect ophthalmoscopy findings. Results: The study included 172 eyes from 87 patients. In comparing D-EYE to indirect ophthalmoscopy for detecting fundus abnormalities, the sensitivity was 0.72, specificity was 0.97, positive predictive value (PPV) was 0.77, negative predictive value (NPV) was 0.97, positive likelihood ratio (LR) was 27.8, and negative LR was 0.29. The agreement rate between the D-EYE video graders for the c/d ratio within a value of 0.1 was 97.0%. Multiple, distinct abnormalities were discovered using the D-EYE device, including nystagmus, optic nerve hypoplasia, optic disc edema, peripapillary atrophy, disc pallor, and optic disc drusen. Conclusion: Fundoscopic imaging using the D-EYE smartphone lens reliably detects the presence of fundus abnormalities and has good reliability in assessing c/d ratios. The video capability is useful in patients with nystagmus or those who are poorly compliant with the examination and allowed for effective teaching by the pediatric ophthalmologist.
PurposeThe treatment of retinopathy of prematurity (ROP) is not standardized and can vary significantly between providers. This study aims to determine preferred practices in treating ROP by globally surveying pediatric ophthalmologists.MethodsBetween January and February 2017, an international pediatric ophthalmology interest group was invited to complete an anonymous survey of 18 questions. The main objectives were to determine the preferred first line of treatment for ROP, the preferred dosage of intravitreal bevacizumab (IVB) used, and the outcome and possible complications following bevacizumab injection.ResultsOut of 101 pediatric ophthalmologists, 72 (71.8%) stated that they had direct involvement in the treatment of ROP. When presented with type 1 ROP which requires treatment, 69 ophthalmologists (68.3%) stated that they prefer laser treatment over bevacizumab, and 33 ophthalmologists (32.7%) stated they would recommend bevacizumab as a first choice. Ninety-three ophthalmologists (92.1%) reported the success of 1 laser treatment between 75% and 100%, and 35 ophthalmologists (34.7%) perceive bevacizumab to be 75%–100% successful. Half dose of adult-prescribed bevacizumab at 0.625 mg/0.05 mL was preferred by 47 of the ophthalmologists (46.5%). No cases of endophthalmitis were reported with intravitreal injection.ConclusionLaser photoablation remains the preferred mode of treatment for ROP among surveyed ophthalmologists across the world. Though bevacizumab is currently being used, this form of treatment is not as common, primarily due to the unknown safety profile and potential long-term ramifications of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.