BackgroundThe open reading frames of subAB genes and their flanking regions of 18 food-borne Shiga toxin-producing E. coli (STEC) strains were analyzed.ResultsAll but one subAB open reading frames (ORF) were complete in all STEC strains. The subAB1 genes of nine STEC strains were located on large plasmids. The subAB2 allele (here designated subAB2-1), which was recently described by others to be present in the Subtilase-Encoding PAI (SE-PAI) was found in 6 STEC strains. A new chromosomal subAB2 variant, designated subAB2-2 was detected in 6 strains and was linked to a chromosomal gene hypothetically encoding an outer membrane efflux protein (OEP). Three STEC strains contained both subAB2 variants. DNA analysis indicated sequence conservation in the plasmid-located alleles and sequence heterogeneity among the chromosomal subAB2 genes.ConclusionsThe results of this study have shown that 18 subAB-PCR positive STEC strains contain complete subAB open reading frames. Furthermore, the new allelic variant subAB2-2 was described, which can occur in addition to subAB2-1 on a new chromosomal locus.
e Seventy-five food-associated Shiga toxin-producing Escherichia coli (STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI I CL3 , and the autotransporter-encoding gene sabA was examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE), selC, pheU, and pheV, as well as the Stx phage integration sites yehV, yecE, wrbA, z2577, and ssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagic E. coli (HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogenic eae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strain E. coli O104:H4 were found in cluster A. Cluster B comprises only eae-negative food-borne STEC strains as well as mainly eae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.