Climate change and variability is affecting maize (Zea mays L.) production in eastern Ethiopia but how farmers perceive the challenge and respond to it is not well documented. A study was conducted to analyze smallholder maize farmers’ perception of climate change/variability and identify their adaptation approaches and barriers for adaptation in the eastern highlands of Ethiopia. Meteorological data were assessed to provide evidence of the perceived change. A survey was conducted in six major maize-producing kebeles with a total of 364 respondents. A multi-stage sampling method was employed for selecting the sample units for the study. The data were analyzed using descriptive statistics and a multinomial logit model. The results indicated that 78% of the sampled smallholder maize farmers perceived increasing temperatures while 83% perceived decreasing amounts of rainfall. About 75% of the farmers indicated that they became aware of climate change and variability from their own experience and perceived deforestation as the main cause. The farmers perceived that drought, diseases and pests, dwindling soil fertility, and declining crop yields were the major impacts of climate change that affected maize production. The farmers’ major adaptation practices include adjusting planting dates, using improved maize varieties, intercropping, recommended mineral fertilizers, supplementary irrigation, and soil and water conservation measures. Econometric analysis revealed that low educational level, shortage of land, large family sizes, age, lack of access to irrigation water, lack of access to credit, and lack of access to extension services were the most important barriers to climate change adaptation in the area. It is concluded that farmers cultivating maize in the study area have perceived climate change and use certain adaptation strategies to counter its negative impacts on maize production. This implies that policies should be geared towards strengthening farmers’ efforts to adapt to climate change and alleviate the existing barriers in promoting adaptation strategies for enhancing the productivity of maize.
Smallholder farmers in East and West Hararghe zones, Ethiopia frequently face problems of climate extremes. Knowledge of past and projected climate change and variability at local and regional scales can help develop adaptation measures. A study was therefore conducted to investigate the spatio-temporal dynamics of rainfall and temperature in the past (1988–2017) and projected periods of 2030 and 2050 under two Representative Concentration Pathways (RCP4.5 and RCP8.5) at selected stations in East and West Hararghe zones, Ethiopia. To detect the trends and magnitude of change Mann–Kendall test and Sen’s slope estimator were employed, respectively. The result of the study indicated that for the last three decades annual and seasonal and monthly rainfall showed high variability but the changes are not statistically significant. On the other hand, the minimum temperature of the ‘Belg’ season showed a significant (p < 0.05) increment. The mean annual minimum temperature is projected to increase by 0.34 °C and 2.52 °C for 2030, and 0.41 °C and 4.15 °C for 2050 under RCP4.5 and RCP8.5, respectively. Additionally, the mean maximum temperature is projected to change by −0.02 °C and 1.14 °C for 2030, and 0.54 °C and 1.87 °C for 2050 under RCP4.5 and RCP 8.5, respectively. Annual rainfall amount is also projected to increase by 2.5% and 29% for 2030, and 12% and 32% for 2050 under RCP4.5 and RCP 8.5, respectively. Hence, it is concluded that there was an increasing trend in the Belg season minimum temperature. A significant increasing trend in rainfall and temperature are projected compared to the baseline period for most of the districts studied. This implies a need to design climate-smart crop and livestock production strategies, as well as an early warning system to counter the drastic effects of climate change and variability on agricultural production and farmers’ livelihood in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.