Developing data standards on Version Control System platforms like GitHub enables collaboration and transparency.• Many standards do not use tools for collaboration: issue tracking, licensing, and automated website hosting (GitBook or GitHub Pages).• We make recommendations and provide templates for creating descriptive versioncontrolled data standard documentation on GitHub.
Abstract. This paper provides initial results from a multi-model ensemble analysis based on the volc-pinatubo-full experiment performed within the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) as part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The volc-pinatubo-full experiment is based on an ensemble of volcanic forcing-only climate simulations with the same volcanic aerosol dataset across the participating models (the 1991–1993 Pinatubo period from the CMIP6-GloSSAC dataset). The simulations are conducted within an idealized experimental design where initial states are sampled consistently across models from the CMIP6-piControl simulation providing unperturbed preindustrial background conditions. The multi-model ensemble includes output from an initial set of six participating Earth system models (CanESM5, GISS-E2.1-G, IPSL-CM6A-LR, MIROC-E2SL, MPI-ESM1.2-LR and UKESM1). The results show overall good agreement between the different models on the global and hemispheric scales concerning the surface climate responses, thus demonstrating the overall effectiveness of VolMIP's experimental design. However, small yet significant inter-model discrepancies are found in radiative fluxes, especially in the tropics, that preliminary analyses link with minor differences in forcing implementation; model physics, notably aerosol–radiation interactions; the simulation and sampling of El Niño–Southern Oscillation (ENSO); and, possibly, the simulation of climate feedbacks operating in the tropics. We discuss the volc-pinatubo-full protocol and highlight the advantages of volcanic forcing experiments defined within a carefully designed protocol with respect to emerging modelling approaches based on large ensemble transient simulations. We identify how the VolMIP strategy could be improved in future phases of the initiative to ensure a cleaner sampling protocol with greater focus on the evolving state of ENSO in the pre-eruption period.
Stream temperature (Ts) is an important water quality parameter that affects ecosystem health and human water use for beneficial purposes. Accurate Ts predictions at different spatial and temporal scales can inform water management decisions that account for the effects of changing climate and extreme events. In particular, widespread predictions of Ts in unmonitored stream reaches can enable decision makers to be responsive to changes caused by unforeseen disturbances. In this study, we demonstrate the use of classical machine learning (ML) models, support vector regression and gradient boosted trees (XGBoost), for monthly Ts predictions in 78 pristine and human-impacted catchments of the Mid-Atlantic and Pacific Northwest hydrologic regions spanning different geologies, climate, and land use. The ML models were trained using long-term monitoring data from 1980–2020 for three scenarios: (1) temporal predictions at a single site, (2) temporal predictions for multiple sites within a region, and (3) spatiotemporal predictions in unmonitored basins (PUB). In the first two scenarios, the ML models predicted Ts with median root mean squared errors (RMSE) of 0.69–0.84 C and 0.92–1.02 C across different model types for the temporal predictions at single and multiple sites respectively. For the PUB scenario, we used a bootstrap aggregation approach using models trained with different subsets of data, for which an ensemble XGBoost implementation outperformed all other modeling configurations (median RMSE 0.62 C).The ML models improved median monthly Ts estimates compared to baseline statistical multi-linear regression models by 15–48% depending on the site and scenario. Air temperature was found to be the primary driver of monthly Ts for all sites, with secondary influence of month of the year (seasonality) and solar radiation, while discharge was a significant predictor at only 10 sites. The predictive performance of the ML models was robust to configuration changes in model setup and inputs, but was influenced by the distance to the nearest dam with RMSE <1 C at sites situated greater than 16 and 44 km from a dam for the temporal single site and regional scenarios, and over 1.4 km from a dam for the PUB scenario. Our results show that classical ML models with solely meteorological inputs can be used for spatial and temporal predictions of monthly Ts in pristine and managed basins with reasonable (<1 C) accuracy for most locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.