Streptomyces lividans ISP 5434 contains four small high copy number plasmids: pIJ101 (8.9 kb), pIJ102 (4.0 kb), pIJ103 (3.9 kb) and pIJ104 (4.9 kb). The three smaller species appear to be naturally occurring deletion variants of pIJ101. pIJ101 and its in vivo and in vitro derivatives were studied after transformation into S. lividans 66. pIJ101 was found to be self-transmissible by conjugation, to elicit "lethal zygosis" and to promote chromosomal recombination at high frequency in both S. lividans 66 and S. coelicolor A3(2). A restriction endonuclease cleavage map of pIJ101 was constructed for 11 endonucleases; sites for five others were lacking. Many variants of pIJ101 were constructed in vitro by inserting DNA fragments determining resistance to neomycin, thiostrepton or viomycin, and having BamHI termini, into MboI or BclI sites on the plasmid, sometimes with deletion of segments of plasmid DNA. The physical maps of these plasmids were related to their phenotypes in respect of lethal zygosis and transfer properties. In vivo recombination tests between pairs of variant plasmids were also done. These physical and genetic studies indicated that determinants of conjugal transfer occupy less than 2.1 kb of the plasmid. A second segment is required for spread of the plasmid within a plasmid-free culture to produce the normal lethal zygosis phenotype: insertion of foreign DNA in this region caused a marked reduction in the diameter of lethal zygosis zones. The minimum replicon was deduced to be 2.1 kb or less in size; adjacent to this region is a 0.5 kb segment which may be required for stable inheritance of the plasmid. The copy number of several derivatives of pIJ101 in S. lividans 66 was between 40 and 300 per chromosome and appeared to vary with the age or physiological state of the culture. pIJ101 derivatives have a wide host range within the genus Streptomyces: 13 out of 18 strains, of diverse species, were successfully transformed. Knowledge of dispensable DNA segments and the availability of restriction sites for the insertion of DNA, deduced from the properties of plasmids carrying the E. coli plasmid pACYC184 introduced at various sites, was used in the construction of several derivatives of pIJ101 suitable as DNA cloning vectors. These were mostly designed to be non-conjugative and to carry pairs of resistance genes for selection. They include a bifunctional shuttle vector for E. coli and Streptomyces; a Streptomyces viomycin resistance gene of this plasmid is expressed in both hosts.
Streptomyces lividans 66 was shown to harbour two self-transmissible plasmids : SLP2, which acts as a sex factor, and SLP3. Derivatives of this strain which had lost both plasmids were used as host strains to study a range of Streptomyces plasmids for their ability to promote their own transfer and to mobilize chromosomal markers. A linkage map of the S . lividans chromosome containing ten markers was derived from the results of matings using several different sex plasmids, and protoplast fusions. SLP2 was transferred interspecifically to S . parvulus ATCC 12434 and to S. coelicolor A3(2); in the latter it acted as a fertility factor. Interspecific crosses also led to the discovery of a further plasmid, SLP4, from S . coelicolor. SLP2, SLP3 and SLP4 could not be visualized on agarose gels using standard plasmid isolation procedures, but their presence was detected by transformation into S . lividans.
A recently discovered antibiotic (CDA ; calcium-dependent antibiotic) of Streptomyces coelicolor A3(2) was found to be effective against a wide range of Gram-positive bacteria only in the presence of calcium ions. Producer and non-producer strains were identified and several media tested for their ability to support antibiotic production. The action of calcium was not simulated by any of the other cations tested. The antibiotic was found to induce discrete conductance fluctuations in planar lipid bilayer consistent with a channel-forming action. The electrical potential difference caused by a concentration difference of various salts across the CDAcontaining bilayer, showed the channel to be cation-selective but of a size that discriminated against tetramethyl ammonium and choline ions. The data indicate that the antibiotic activity of CDA is due to its action as a calcium-dependent ionophore.
Numerous recombinants arose when protoplasts of S. coelicolor were treated with polyethylene glycol and regenerated on non-selective solid medium. In six-factor crosses, recombination frequencies of more than 10% (up to 17%) were routinely observed. This recombination did not require either of the known sex factors, SCPI and SCP2. The proportion of multiple crossover classes was much higher than amongst recombinants produced by conjugated between mycelia. Analysis of the spatial distribution of crossovers in double and quadruple crossover recombinants showed only a slight tendency for crossovers to occur closer together than randomly on the complete linkage group. This suggests that genomes brought together by protoplast fusion are complete, or nearly so (in conjugation, in contrast, one genome is represented by a comparatively short fragment). Individual colonies arising from fused protoplasts did not contain different parental genomes without recombinants, but recombinants often occurred without parentals. Several recombinant genotypes often occurred in the same colony, showing a segregation of some, only, of the parental alleles. Complementary genotypes, parental or recombinant, did not occur in the same colony. It is postulated that complete genomes of fused protoplasts usually become fragmented and that crossing-over, often repeated, occurs between the fragments, to generate haploid recombinants. Analysis of fusions between propoplasts of four different genotypes indicated that the average number of protoplasts fusing together was low, but nevertheless appreciable numbers of fusions involved three or four genomes. Crossing-over between them produced recombinants inheriting markers from three or four parents. The generation of nearly random populations of recombinants between two or more parent strains by propoplast fusion under the conditions described appears to have simple applications in industrial and academic strain construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.