Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 pulmonary TB patients and 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high level of ASAP1 expression, which was reduced after M. tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis-infected DCs may lead to their impaired migration, suggesting a potential novel mechanism that predisposes to TB.
The Weibel-Palade bodies (WPBs) of endothelial cells play an important role in haemostasis and the initiation of inflammation, yet their biogenesis is poorly understood. Tubulation of their major content protein, von Willebrand factor (VWF), is crucial to WPB function, and so we investigated further the relationship between VWF tubule formation and WPB formation in human umbilical vein endothelial cells (HUVECs). By using high-pressure freezing and freeze substitution before electron microscopy, we visualised VWF tubules in the trans-Golgi network (TGN), as well as VWF subunits in vesicular structures. Tubules were also seen in WPBs that were connected to the TGN by membranous stalks. Tubules are disorganised in the immature WPBs but during maturation we found a dramatic increase in the spatial organisation of the tubules and in organelle electron density. We also found coated budding profiles suggestive of the removal of missorted material after initial formation of these granules. Finally, we discovered that these large, seemingly rigid, organelles flex at hinge points and that the VWF tubules are interrupted at these hinges, facilitating organelle movement around the cell. The use of high-pressure freezing was vital in this study and it suggests that this technique might prove essential to any detailed characterisation of organelle biogenesis.
Key Points• MKL1 deficiency results in actin cytoskeletal disruption in myeloid and lymphoid cell lineages.• MKL1 deficiency impairs neutrophil migration associated with downregulation of myosin II.Megakaryoblastic leukemia 1 (MKL1), also known as MAL or myocardin-related transcription factor A (MRTF-A), is a coactivator of serum response factor, which regulates transcription of actin and actin cytoskeleton-related genes. MKL1 is known to be important for megakaryocyte differentiation and function in mice, but its role in immune cells is unexplored. Here we report a patient with a homozygous nonsense mutation in the MKL1 gene resulting in immunodeficiency characterized predominantly by susceptibility to severe bacterial infection. We show that loss of MKL1 protein expression causes a dramatic loss of filamentous actin (F-actin) content in lymphoid and myeloid lineage immune cells and widespread cytoskeletal dysfunction. MKL1-deficient neutrophils displayed reduced phagocytosis and almost complete abrogation of migration in vitro. Similarly, primary dendritic cells were unable to spread normally or to form podosomes. Silencing of MKL1 in myeloid cell lines revealed that F-actin assembly was abrogated through reduction of globular actin (G-actin) levels and disturbed expression of multiple actin-regulating genes. Impaired migration of these cells was associated with failure of uropod retraction likely due to altered contractility and adhesion, evidenced by reduced expression of the myosin light chain 9 (MYL9) component of myosin II complex and overexpression of CD11b integrin. Together, our results show that MKL1 is a nonredundant regulator of cytoskeleton-associated functions in immune cells and fibroblasts and that its depletion underlies a novel human primary immunodeficiency. (Blood. 2015;126(13):1527-1535
Primary immunodeficiencies are a highly heterogeneous group of genetic disorders caused by Mendelian mutations in more than 150 immune-related genes 1 . Primary immunodeficiencies manifest as severe and/or disseminated recurrent infections and may also have autoimmune manifestations.We studied a female patient P1 of Pakistani origin who presented at the age of 4 years with a generalized lymphadenopathy, splenomegaly, neutropenia (0.05-0.28 ×10 9 /L) and thrombocytopenia (platelet counts 20-40 ×10 9 /L). A lymph node biopsy showed reactive changes, bone marrow aspirate was unremarkable and anti-neutrophil antibodies were present. She also had chronic diarrhea associated with an autoimmune enteropathy, characterized by duodenal villous atrophy and large bowel lymphocytic infiltration on biopsy. Her initial immunology work up revealed only raised IgG levels (22.6 g/L), raised inflammatory markers and a low number of NK cells (0.00-0.02). Lymphocyte subsets, double negative T-cells, T-cell proliferation assays, IgA (1.33 g/L), IgM (1.43 g/L), tetanus vaccine responses and a nitroblue tetrazolium (NBT) test were normal (Table 1). P1 had no
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.