Motivation The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. Results The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. Availabilityand implementation COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. Supplementary information Supplementary data are available at Bioinformatics online.
Speech quality in online conferencing applications is typically assessed through human judgements in the form of the mean opinion score (MOS) metric. Since such a labor-intensive approach is not feasible for large-scale speech quality assessments in most settings, the focus has shifted towards automated MOS prediction through end-to-end training of deep neural networks (DNN). Instead of training a network from scratch, we propose to leverage the speech representations from the pre-trained wav2vec-based XLS-R model. However, the number of parameters of such a model exceeds task-specific DNNs by several orders of magnitude, which poses a challenge for resulting fine-tuning procedures on smaller datasets. Therefore, we opt to use pre-trained speech representations from XLS-R in a feature extraction rather than a fine-tuning setting, thereby significantly reducing the number of trainable model parameters. We compare our proposed XLS-R-based feature extractor to a Mel-frequency cepstral coefficient (MFCC)-based one, and experiment with various combinations of bidirectional long short term memory (Bi-LSTM) and attention pooling feedforward (AttPoolFF) networks trained on the output of the feature extractors. We demonstrate the increased performance of pre-trained XLS-R embeddings in terms a reduced root mean squared error (RMSE) on the ConferencingSpeech 2022 MOS prediction task.
Motivation The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models (KGEMs). However, representations based on a single modality are inherently limited. Results To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs (KGs). This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations in a shared embedding space. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against three baseline models trained on either one of the modalities (i.e., text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.084 (i.e., from 0.881 to 0.965). Finally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications. Availability We make the source code and the Python package of STonKGs available at GitHub (https://github.com/stonkgs/stonkgs) and PyPI (https://pypi.org/project/stonkgs/). The pre-trained STonKGs models and the task-specific classification models are respectively available at https://huggingface.co/stonkgs/stonkgs-150k and https://zenodo.org/communities/stonkgs. Supplementary information Supplementary data are available at Bioinformatics online.
The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models (KGEMs). However, representations based on a single modality are inherently limited. To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs. This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against two baseline models trained on either one of the modalities (i.e., text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.083. Additionally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications. Finally, the source code and pre-trained STonKGs models are available at https://github.com/stonkgs/stonkgs and https://huggingface.co/stonkgs/stonkgs-150k.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.