Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM). In vitro hypoxia experiments with glioma cells and studies with patient materials reveal the enrichment in exosomes of hypoxia-regulated mRNAs and proteins (e.g., matrix metalloproteinases, IL-8, PDGFs, caveolin 1, and lysyl oxidase), several of which were associated with poor glioma patient prognosis. We show that exosomes derived from GBM cells grown at hypoxic compared with normoxic conditions are potent inducers of angiogenesis ex vivo and in vitro through phenotypic modulation of endothelial cells. Interestingly, endothelial cells were programmed by GBM cell-derived hypoxic exosomes to secrete several potent growth factors and cytokines and to stimulate pericyte PI3K/AKT signaling activation and migration. Moreover, exosomes derived from hypoxic compared with normoxic conditions showed increased autocrine, promigratory activation of GBM cells. These findings were correlated with significantly enhanced induction by hypoxic compared with normoxic exosomes of tumor vascularization, pericyte vessel coverage, GBM cell proliferation, as well as decreased tumor hypoxia in a mouse xenograft model. We conclude that the proteome and mRNA profiles of exosome vesicles closely reflect the oxygenation status of donor glioma cells and patient tumors, and that the exosomal pathway constitutes a potentially targetable driver of hypoxia-dependent intercellular signaling during tumor development.biomarker | blood vessels | CNS
Significance Exosome-mediated intercellular transfer of proteins and nucleic acids has attracted considerable attention as exosomes may promote the development of cancer and other pathological conditions; however, the mechanism of exosome uptake by target cells and how this may be inhibited remain as important questions. We provide evidence that heparan sulfate proteoglycans (HSPGs) function as receptors of cancer cell-derived exosomes. Importantly, our data indicate that the HSPG-dependent uptake route is highly relevant for the biological activity of exosomes, and thus a potential target for inhibition of exosome-mediated tumor development. Given that several viruses have previously been shown to enter cells through HSPGs, our data implicate HSPG as a convergence point during cellular uptake of endogenous vesicles and virus particles.
Background: Exosome vesicles can transfer molecular information previously shown to stimulate tumor development; however, the mechanism of exosome uptake is unknown.Results: Mammalian cells internalize exosomes through lipid raft-mediated endocytosis negatively regulated by caveolin-1.Conclusion: Our findings provide novel insights into cellular uptake of exosomes.Significance: Our data provide potential strategies for how the exosome uptake pathway may be targeted.
How various macromolecules are exchanged between cells and how they gain entry into recipient cells are fundamental questions in cell biology with important implications e.g. non-viral drug delivery, infectious disease, metabolic disorders, and cancer. The role of heparan sulfate proteoglycan (HSPG) as a cell-surface receptor of diverse macromolecular cargo has recently been manifested. Exosomes, cell penetrating peptides, polycation-nucleic acid complexes, viruses, lipoproteins, growth factors and morphogens among other ligands enter cells through HSPG-mediated endocytosis. Key questions that partially have been unraveled over recent years include the respective roles of HSPG core protein and HS chain structure specificity for macromolecular cargo endocytosis, the down-stream intracellular signaling events involved in HSPG-dependent membrane invagination and vesicle formation, and the biological significance of the HSPG transport pathway. Here, we discuss the intriguing role of HSPGs as a major entry pathway of macromolecules in mammalian cells with emphasis on recent in vitro and in vivo data that provide compelling evidence of HSPG as an autonomous endocytosis receptor.
Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein–coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2–mediated activation of hypoxic ECs. We show that PAR-2–dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2–dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa–dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2–mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.