Somatosensory tinnitus is a generally agreed subtype of tinnitus that is associated with activation of the somatosensory, somatomotor, and visual-motor systems. A key characteristic of somatosensory tinnitus is that is modulated by physical contact or movement. Although it seems common, its pathophysiology, assessment and treatment are not well defined. We present a scoping review on the pathophysiology, diagnosis, and treatment of somatosensory tinnitus, and identify priority directions for further research.Methods: Literature searches were conducted in Google Scholar, PubMed, and EMBASE databases. Additional broad hand searches were conducted with the additional terms etiology, diagnose, treatment.Results: Most evidence on the pathophysiology of somatosensory tinnitus suggests that somatic modulations are the result of altered or cross-modal synaptic activity within the dorsal cochlear nucleus or between the auditory nervous system and other sensory subsystems of central nervous system (e.g., visual or tactile). Presentations of somatosensory tinnitus are varied and evidence for the various approaches to treatment promising but limited.Discussion and Conclusions: Despite the apparent prevalence of somatosensory tinnitus its underlying neural processes are still not well understood. Necessary involvement of multidisciplinary teams in its diagnosis and treatment has led to a large heterogeneity of approaches whereby tinnitus improvement is often only a secondary effect. Hence there are no evidence-based clinical guidelines, and patient care is empirical rather than research-evidence-based. Somatic testing should receive further attention considering the breath of evidence on the ability of patients to modulate their tinnitus through manouvers. Specific questions for further research and review are indicated.
Mutations in the GJB2 gene are a major cause of nonsyndromic recessive hearing loss in many countries. In a significant fraction of patients, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity are identified. This paper reports a novel GJB2 mutation, 23438CRT, found in the basal promoter of the gene, in trans with V84M, in a patient with profound hearing impairment. This novel mutation can abolish the basal promoter activity of GJB2. These results highlight the importance of extending the mutational screening to regions outside the coding region of GJB2.
Hereditary hearing loss (HL) is a very heterogeneous trait, with 46 gene identifications for non-syndromic HL. Mutations in GJB2 cause up to half of all cases of severe-to-profound congenital autosomal recessive non-syndromic HL, with 35delG being the most frequent mutation in Caucasians. Although a genotypephenotype correlation has been established for most GJB2 genotypes, the HL of 35delG homozygous patients is mild to profound. We hypothesise that this phenotypic variability is at least partly caused by the influence of modifier genes. By performing a whole-genome association (WGA) study on 35delG homozygotes, we sought to identify modifier genes. The association study was performed by comparing the genotypes of mild/moderate cases and profound cases. The first analysis included a pooling-based WGA study of a first set of 255 samples by using both the Illumina 550K and Affymetrix 500K chips. This analysis resulted in a ranking of all analysed single-nucleotide polymorphisms (SNPs) according to their P-values. The top 250 most significantly associated SNPs were genotyped individually in the same sample set. All 192 SNPs that still had significant P-values were genotyped in a second independent set of 297 samples for replication. The significant P-values were replicated in nine SNPs, with combined P-values between 3 Â 10 À3 and 1 Â 10 À4 . This study suggests that the phenotypic variability in 35delG homozygous patients cannot be explained by the effect of one major modifier gene. Significantly associated SNPs may reflect a small modifying effect on the phenotype. Increasing the power of the study will be of greatest importance to confirm these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.