Aims Therapeutic drug monitoring of infliximab can guide clinical decisions in patients with loss of response and in those who can benefit from a de‐intensification. The aim of this study was to determine the impact of therapeutic drug monitoring combined with Bayesian forecasting methodology on clinical response in a real‐world dataset of patients suffering from inflammatory bowel disease. Methods We performed a single‐centre prospective study with one‐group pre‐test/post‐test design in 108 adult inflammatory bowel disease patients treated with model‐based dosing of infliximab maintenance treatment. We recorded clinical activity scores (Harvey‐Bradshaw index and partial Mayo) and inflammatory biomarkers per patient. Results The initial infliximab regimen was maintained in 49 (45.4%) patients and was adjusted in 59 (54.6%) patients (34 treatment intensifications, 9 de‐intensifications and 16 treatment discontinuations or therapy replacements). The median time from intervention to index measurement was 126 (103–160) days. The overall proportion of patients in clinical remission increased from 65.7% to 80.4% (P < .0001) and the median infliximab trough concentrations increased from 3.21 (0.99–5.45) to 5.13 mg/L (3.57–6.53) (P < .0001). In the intensified group, the remission rate increased from 35.3% to 61.8% (P = .001) and the percentage of patients in clinical remission or with mild symptoms increased from 76.5% to 94.1%. In the de‐intensification cohort, no patients experienced an increase in the Harvey‐Bradshaw index or partial Mayo scores, and all patients maintained an infliximab trough concentration of >5 mg/L. Conclusion In our cohort of inflammatory bowel disease patients, Bayes‐based optimized dosing improved the short‐term efficacy of infliximab treatment.
Recent advances in the field of nanotechnology such as nanoencapsulation offer new biomedical applications, potentially increasing the scope and efficacy of therapeutic drug delivery. In addition, the discovery and development of novel biocompatible polymers increases the versatility of these encapsulating nanostructures, enabling chemical properties of the cargo and vehicle to be adapted to specific physiological requirements. Here, we evaluate the capacity of various polymeric nanostructures to encapsulate various antibiotics of different classes, with differing chemical structure. Polymers were sourced from two separate derivatives of poly(methyl vinyl ether-alt-maleic anhydride) (PMVE/MA): an acid (PMVE/MA-Ac) and a monoethyl ester (PMVE/MA-Es). Nanoencapsulation of antibiotics was attempted through electrospinning, and nanoparticle synthesis through solvent displacement, for both polymers. Solvent incompatibilities prevented the nanoencapsulation of amikacin, neomycin and ciprofloxacin in PMVE/MA-Es nanofibers. However, all compounds were successfully loaded into PMVE/MA-Es nanoparticles. Encapsulation efficiencies in nanofibers reached approximately 100% in all compatible systems; however, efficiencies varied substantially in nanoparticles systems, depending on the tested compound (14%–69%). Finally, it was confirmed that both these encapsulation processes did not alter the antimicrobial activity of any tested antibiotic against Staphylococcus aureus and Escherichia coli, supporting the viability of these approaches for nanoscale delivery of antibiotics.
Background The pharmacokinetics (PK) of antibiotics change during sepsis and continuous renal replacement therapies in critically ill patients. Limited evidence exists on the use of the oXiris® high-adsorbent membrane. Objectives To develop a PK/pharmacodynamic (PD) model for meropenem in critically ill sepsis patients undergoing continuous venovenous haemodiafiltration (CVVHDF) with the oXiris® membrane, and to design an optimal dosing regimen assessed according to the PTA. Methods A prospective, open-label, observational PK trial was performed (EUDRACT 2011-005902-30). We conducted PK studies (plasma and ultrafiltrate) for at least 24 h after concomitant administration of CVVHDF and meropenem 1 g q8h. We constructed a PK model using the non-linear mixed-effects approach (NONMEM 7.3). We evaluated the suitability of different dosage regimens using Monte Carlo simulations and calculated the PTA as the percentage of subjects achieving a given percentage of time above the MIC (fT>MIC). Results The PK of meropenem was best captured by a two-open-compartment model with zero-order input kinetics and first-order elimination. Extracorporeal CL was 7.78 L/h [relative standard error (RSE) 16.45 L/h] and central compartment V (Vc) was 24.9 L (RSE 13.73 L). Simulations showed that, for susceptible Pseudomonas aeruginosa isolates (EUCAST MIC ≤2 mg/L) and attainment of 100%fT>MIC, 500 mg q8h given as extended (EI) or continuous infusion (CI) would be sufficient. For a target of 100%fT>4×MIC, CI of 3000 mg q24h or 2000 mg q8h administered as EI or CI would be required. Conclusions We have constructed a PK model of meropenem in sepsis patients undergoing CVVHDF using the oXiris® membrane. This tool will support physicians when calculating the optimal initial dose.
This study aimed (1) to develop a semimechanistic pharmacokinetic (PK) model for nimotuzumab in patients with advanced breast cancer and (2) to identify demographic, biochemical, and clinical predictive factors of the PK variability. Data from a phase 1 study were analyzed using the nonlinear mixed-effects approach (NONMEM). A target-mediated disposition model that included 2 open PK compartments, the monoclonal antibody (mAb)-target binding, and target and mAb-target complex turnovers best described the linear and nonlinear PK. Covariates had no influence on the PK parameters. The final parameter estimates were 19.93 L (steady-state volume), 0.0045-0.0172 L/h (range of total clearance values), 6.96 μg/mL (steady-state binding constant), 5.50 h(-1) (target degradation rate constant), 1.43 (μg/mL) · h(-1) (complex formation rate), and 0.148 h(-1) (complex internalization rate constant). The model described the effect of the mAb-target binding, and target and mAb-target complex turnovers on nimotuzumab PK. Simulations showed that doses above 200 mg maintained the 50% target occupancy during all of the treatment. This model can be very useful for knowing the dosing schedules required for efficacy and supports further investigation of the pharmacokinetic/pharmacodynamic relationships of nimotuzumab to improve its therapeutic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.