This paper deals with the automatic transcription of four-part, a cappella singing, audio performances. In particular, we exploit an existing, deep-learning based, multiple F0 estimation method and complement it with two neural network architectures for voice assignment (VA) in order to create a music transcription system that converts an input audio mixture into four pitch contours. To train our VA models, we create a novel synthetic dataset by collecting 5381 choral music scores from public-domain music archives, which we make publicly available for further research. We compare the performance of the proposed VA models on different types of input data, as well as to a hidden Markov model-based baseline system. In addition, we assess the generalization capabilities of these models on audio recordings with differing pitch distributions and vocal music styles. Our experiments show that the two proposed models, a CNN and a ConvLSTM, have very similar performance, and both of them outperform the baseline HMM-based system. We also observe a high confusion rate between the alto and tenor voice parts, which commonly have overlapping pitch ranges, while the bass voice has the highest scores in all evaluated scenarios.
The aim of this contribution is to automatically detect COVID-19 patients by analysing the acoustic information embedded in coughs. COVID-19 affects the respiratory system, and, consequently, respiratory-related signals have the potential to contain salient information for the task at hand. We focus on analysing the spectrogram representations of cough samples with the aim to investigate whether COVID-19 alters the frequency content of these signals. Furthermore, this work also assesses the impact of gender in the automatic detection of COVID-19. To extract deep-learnt representations of the spectrograms, we compare the performance of a cough-specific, and a Resnet18 pre-trained Convolutional Neural Network (CNN). Additionally, our approach explores the use of contextual attention, so the model can learn to highlight the most relevant deep-learnt features extracted by the CNN. We conduct our experiments on the dataset released for the Cough Sound Track of the DICOVA 2021 Challenge. The best performance on the test set is obtained using the Resnet18 pre-trained CNN with contextual attention, which scored an Area Under the Curve (AUC) of 70.91 % at 80 % sensitivity.
Choral singing in the soprano, alto, tenor and bass (SATB) format is a widely practiced and studied art form with significant cultural importance. Despite the popularity of the choral setting, it has received little attention in the field of Music Information Retrieval. However, the recent publication of high-quality choral singing datasets as well as recent developments in deep learning based methodologies applied to the field of music and speech processing, have opened new avenues for research in this field. In this paper, we use some of the publicly available choral singing datasets to train and evaluate state-of-the-art source separation algorithms from the speech and music domains for the case of choral singing. Furthermore, we evaluate existing monophonic F0 estimators on the separated unison stems and propose an approximation of the perceived F0 of a unison signal. Additionally, we present a set of applications combining the proposed methodologies, including synthesizing a single singer voice from the unison, and transposing and remixing the separated stems into a synthetic multi-singer choral signal. We finally conduct a set of listening tests to perform a perceptual evaluation of the results we obtain with the proposed methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.