With fertilization, the paternal and maternal contributions to the zygote are not equal. The oocyte and spermatozoon are equipped with complementary arsenals of cellular structures and molecules necessary for the creation of a developmentally competent embryo. We show that the nucleolus is exclusively of maternal origin. The maternal nucleolus is not necessary for oocyte maturation; however, it is necessary for the formation of pronuclear nucleoli after fertilization or parthenogenetic activation and is essential for further embryonic development. In addition, the nucleolus in the embryo produced by somatic cell nuclear transfer originates from the oocyte, demonstrating that the maternal nucleolus supports successful embryonic development.
We report on observations of the global methylation/demethylation pattern of both pronuclei in human zygotes and in early embryos up to the blastocyst stage. Our results demonstrate that in about half of the zygotes examined the paternal chromatin was less methylated than the maternal chromatin. In the other half, both pronuclei exhibited the same intensity of labeling. The nuclei in developing embryos were intensively labeled for up to the four-cell stage; thereafter, a decline of labeling intensity was detected. Remethylation in some nuclei starts in late morulae. Surprisingly, and unlike the mouse, at the blastocyst stage the inner cell mass showed a weaker intensity of labeling than the trophectodermal cells.
Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stagespecific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.