1. Iron protoporphyrin IX was required for the growth of H. influenzae. It could be replaced by protoporphyrin IX. When grown on protoporphyrin evidence was obtained for the presence of Fe porphyrin in the organism. It was concluded that the organism could insert iron into the protoporphyrin ring. 2. In the smooth strains, other porphyrins containing no iron such as deutero-, hemato-, meso-, and coproporphyrins could not replace protoporphyrin for growth. Since protoporphyrin has two vinyl groups which other porphyrins lack, it was concluded that the two vinyl groups were essential for growth. 3. When porphyrins lacking vinyl groups were converted chemically into iron porphyrins and then supplied to the organisms it was found that these iron porphyrins supported growth. It was concluded that the "smooth" organisms were able to insert iron only into the porphyrin containing the vinyl groups; i.e., protoporphyrin. One function of the vinyl groups then was to permit iron to be inserted biologically into the porphyrin ring. 4. An anomalous behavior in the rough Turner strain was observed and discussed. This organism was able to insert iron into mesoporphyrin at low concentrations but was inhibited by this compound at higher concentrations. In all other reactions with the porphyrins this rough strain behaved in the same was as did the smooth strains. 5. All strains which were grown on iron porphyrins lacking vinyl groups could not reduce nitrate to nitrite. When grown on protoporphyrin or Fe protoporphyrin reduction of nitrate occurred. It was concluded that the nitrate-reducing mechanism required the presence of the vinyl groups either for its formation or function. 6. The porphyrins lacking iron and lacking vinyl groups inhibited the growth of H. influenzae on Fe protoporphyrin. The inhibition between a porphyrin and Fe protoporphyrin was a competitive one. It was suggested that the porphyrin inhibited the growth-promoting properties of Fe protoporphyrin by attaching on to a particular apoprotein, thus preventing the formation of a heme catalyst. Likewise, competition between two growth-promoting Fe porphyrins for apoenzymes could be shown to occur. 7. Protoporphyrin and Fe protoporphyrin supported growth. When their propionic acid side chains were esterified they no longer supported growth. It was suggested that the esterified carboxyl groups could not attach to the specific apoproteins to form the heme enzymes and so could not act to support growth. For the same reason the inhibitory action of porphyrins lacking vinyl groups could be prevented by esterifying their propionic acid groups.
The porphin requirements of the Hemophilus organisms have been studied. Organisms of the parainfluenzae group show quantitative differences in their ability to synthesize heme. The ability of the parainfluenzae organisms to grow appears to depend on the rate with which they synthesize heme and in part at least on the properties of the medium to protect the heme from peroxidative breakdown. Quantitative studies of the growth of H. influenzae Turner on various iron porphins have been made. Iron protoporphin gives greatest growth when supplied in excess, although iron mesoporphin appears more efficient at lower concentrations. Iron deutero- and iron hematoporphin are much less effective. This suggests that although the vinyl groups are not essential for growth of the Turner organism they may be required for some particular enzymes which aid in attaining maximum growth. A number of substances potentiate the growth-promoting properties of iron porphins. These substances include reducing agents and agents which destroy H2O2. E. influenzae Turner appears to require heme for anaerobic as well as aerobic growth. The possibility of an essential heme enzyme functioning under anaerobic conditions must therefore be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.