Bisphosphonates are highly effective inhibitors of bone resorption that selectively affect osteoclasts. After more than 30 years of clinical use, their molecular mechanisms of action are only just becoming clear.
Recently, advances have been made in understanding the molecular mechanisms by which bisphosphonate drugs inhibit bone resorption. Studies with the macrophage-like cell line J774 have suggested that alendronate, an amino-containing bisphosphonate, causes apoptosis by preventing post-translational modification of GTP-binding proteins with isoprenoid lipids. However, clodronate, a nonaminobisphosphonate, does not inhibit protein isoprenylation but can be metabolized intracellularly to a cytotoxic, beta-gamma-methylene (AppCp-type) analog of ATP. These observations raise the possibility that bisphosphonates can be divided into two groups with distinct molecular mechanisms of action depending on the nature of the R2 side chain. We addressed this question by directly comparing the ability of three aminobisphosphonates (alendronate, ibandronate, and pamidronate) and three nonaminobisphosphonates (clodronate, etidronate, and tiludronate) to inhibit protein isoprenylation and activate caspase-3-like proteases or to be metabolized to AppCp-type nucleotides by J774 cells. All three aminobisphosphonates inhibited protein isoprenylation and activated caspase-3-like proteases. Apoptosis and caspase activation after 24-h treatment with the aminobisphosphonates could be prevented by addition of farnesol or geranylgeraniol, confirming that these bisphosphonates inhibit the metabolic mevalonate pathway. No AppCp-type metabolites of the aminobisphosphonates could be detected by mass spectrometry. The three nonaminobisphosphonates did not inhibit protein isoprenylation or cause activation of caspase-3-like proteases, but were incorporated into AppCp-type nucleotides. Taken together, these observations clearly demonstrate that bisphosphonate drugs can be divided into two pharmacological classes: the aminobisphosphonates, which act by inhibiting protein isoprenylation, and the less potent nonaminobisphosphonates, which act through the intracellular accumulation of AppCp-type metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.