A detailed experimental and theoretical investigation of the dynamics leading to fragmentation of doubly ionized molecular thiophene is presented. Dissociation of double-ionized molecules was induced by S 2p core photoionization and the ionic fragments were detected in coincidence with Auger electrons from the core-hole decay. Rich molecular dynamics was observed in electron-ion-ion coincidence maps exhibiting ring breaks accompanied by hydrogen losses and/or migration. The probabilities of various dissociation channels were seen to be very sensitive to the internal energy of the molecule. Theoretical simulations were performed by using the semiempirical self-consistent charge-density-functional tight-binding method. By running thousands of these simulations, the initial conditions encountered in the experiment were properly taken into account, including the systematic dependencies on the internal (thermal) energy. This systematic approach, not affordable with first-principle methods, provides a good overall description of the complex molecular dynamics observed in the experiment and shows good promise for applicability to larger molecules or clusters, thus opening the door to systematic investigations of complex dynamical processes occurring in radiation damage.
Our study in a limited number of patients confirmed the importance of MATV in the prognosis of locally advanced squamous cell carcinoma of the head and neck. It is of interest that high uptake of the hypoxia tracer [(18)F]EF5 showed a stronger correlation with a poor clinical outcome than [(18)F]FDG uptake. This confirms the importance of hypoxia in treatment outcome and suggests that [(18)F]EF5 may act as a surrogate marker of radioresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.