Purpose: Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia.Experimental Design: We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety.Results: Several FDA/European Medicines Agency (EMA)approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC 50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patientderived HNSCCs. Finally, in vivo toxicity studies in Fancadeficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters.Conclusions: Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.
Background: Fanconi anemia is a rare disease clinically characterized by malformations, bone marrow failure and an increased risk of solid tumors and hematologic malignancies. The only therapies available are hematopoietic stem cell transplantation for bone marrow failure or leukemia, and surgical resection for solid tumors. Therefore, there is still an urgent need for new therapeutic options. With this aim, we developed a novel high-content cellbased screening assay to identify drugs with therapeutic potential in FA. Results: A TALEN-mediated FANCA-deficient U2OS cell line was stably transfected with YFP-FANCD2 fusion protein. These cells were unable to form fluorescent foci or to monoubiquitinate endogenous or exogenous FANCD2 upon DNA damage and were more sensitive to mitomycin C when compared to the parental wild type counterpart. FANCA correction by retroviral infection restored the cell line's ability to form FANCD2 foci and ubiquitinate FANCD2. The feasibility of this cell-based system was interrogated in a high content screening of 3802 compounds, including a Prestwick library of 1200 FDA-approved drugs. The potential hits identified were then individually tested for their ability to rescue FANCD2 foci and monoubiquitination, and chromosomal stability in the absence of FANCA. Conclusions: While, unfortunately, none of the compounds tested were able to restore cellular FANCA-deficiency, our study shows the potential capacity to screen large compound libraries in the context of Fanconi anemia therapeutics in an optimized and cost-effective platform.
<p>Figure S3. Additional immunohistochemistry images from tumor xenografts.</p>
<div>AbstractPurpose:<p>Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia.</p>Experimental Design:<p>We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied <i>in vitro</i> and <i>in vivo</i> for efficacy and safety.</p>Results:<p>Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non–small cell lung cancer (NSCLC), displayed nontumor/tumor IC<sub>50</sub> ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient–derived HNSCCs. Finally, <i>in vivo</i> toxicity studies in <i>Fanca</i>-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters.</p>Conclusions:<p>Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.