The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO 2 levels, by using geostatistical approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This methodology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
The use of mosses as biomonitors operates as an indicator of their concentration in the environment, becoming a methodology which provides a significant interpretation in terms of environmental quality. The different types of pollution are variables that can not be measured directly in the environment - latent variables. Therefore, we propose the use of factor analysis to estimate these variables in order to use them for spatial modelling. On the contrary, the main aim of the commonly used principal components analysis method is to explain the variability of observed variables and it does not permit to explicitly identify the different types of environmental contamination. We propose to model the concentration of each heavy metal as a linear combination of its main sources of pollution, similar to the case of multiple regression where these latent variables are identified as covariates, though these not being observed. Moreover, through the use of geostatistical methodologies, we suggest to obtain maps of predicted values for the different sources of pollution. With this, we summarize the information acquired from the concentration measurements of the various heavy metals, and make possible to easily determine the locations that suffer from a particular source of pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.