The continuous monitoring of human gait would allow to more objectively verify the abnormalities that arise from the most common pathologies. Therefore, this manuscript proposes a real-time tool for human gait detection from lower trunk acceleration. The vertical acceleration signal was acquired through an IMU mounted on a waistband, a wearable device. The proposed algorithm was based on a finite state machine (FSM) which includes a set of suitable decision rules and the detection of Heel-Strike (HS), Foot-flat (FF), Toe-off (TO), Mid-Stance (MS) and Heel-strike (HS) events for each leg. Results involved 7 healthy subjects which had to walk 20 m three times with a comfortable speed. The results showed that the proposed algorithm detects in real-time all the mentioned events with a high accuracy and time-effectiveness character. Also, the adaptability of the algorithm has also been verified, being easily adapted to some gait conditions, such as for different speeds and slopes. Further, the developed tool is modular and therefore can easily be integrated in another robotic control system for gait rehabilitation. These findings suggest that the proposed tool is suitable for the real-time gait analysis in real-life activities.
Freezing of Gait (FOG) is one of the most disabling gait disorders in Parkinson's Disease (PD), for which the efficacy of the medication is reduced, highlighting the use of non-pharmacological solutions. In particular, patients present less difficulties in overcoming FOG when using feedback and especially with Biofeedback Systems. In this study it is intended to detect the frequency threshold and the minimum interval of perception of the vibrotactile feedback, through a proposed wearable system, a waistband. Experimental tests were carried out that considered a temporal, spatial and spatiotemporal context, for which 15 healthy and 15 PD patients participated. It was detected as threshold frequency 180 Hz and for minimum interval of vibration perception 250 ms. The identification of this threshold frequency and this interval will allow us to select the frequency and the minimum interval of vibration to be used in a Vibrotactile Biofeedback Device for patients with PD, in order to help them to overcome FOG.
Parkinson's disease (PD) is often associated with a vast list of gait-associated disabilities, for which there is still a limited pharmacological/surgical treatment efficacy. Therefore, alternative approaches have emerged as vibrotactile biofeedback systems (VBS). This review aims to focus on the technologies supporting VBS and identify their effects on improving gait-associated disabilities by verifying how VBS were applied and validated with end-users. It is expected to furnish guidance to researchers looking to enhance the effectiveness of future vibrotactile cueing systems. The use of vibrotactile cues has proved to be relevant and attractive, as positive results have been obtained in patients' gait performance, suitability in any environment, and easy adherence. There seems to be a preference in developing VBS to mitigate freezing of gait, to improve balance, to overcome the risk of fall, and a prevalent use to apply miniaturized wearable actuators and sensors. Most studies implemented a biofeedback loop able to provide rescue strategies during or after the detection of a gait-associated disability. However, there is a need of more clinical evidence and inclusion of experimental sessions to evaluate if the biofeedback was effectively integrated into the patients' motor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.