Extracellular vesicles are highly abundant in seminal fluids and have a known role enhancing sperm function. Clinical pregnancy rates after IVF treatment are improved after female exposure to seminal fluid. Seminal fluid extracellular vesicles (SF-EVs) are candidate enhancers, however, whether SF-EVs interact with cells from the endometrium and modulate the implantation processes is unknown. Here, we investigated whether SF-EVs interact with endometrial stromal cells (ESCs) and enhance decidualisation, a requisite for implantation. SF-EVs, isolated from human seminal fluid (n = 11) by ultracentrifugation, were characterised by nanoparticle tracking analysis and Western blotting, and purified using size exclusion chromatography. Non-decidualised and decidualised primary ESCs (n = 5) were then treated with SF-EVs. Binding of bio-maleimide-labelled SF-EVs was detected by flow cytometry and fluorescence microscopy. Prolactin and IGFBP-1 protein levels in culture media were also analysed after single and multiple SF-EV exposure. SF-EVs size ranged from 50 to 300 nm, and they expressed exosomal markers (ALIX, SYNTENIN-1, CD9 and CD81). SF-EVs bound to non-decidualised and decidualised ESCs at similar levels. ESCs prolactin secretion was increased after single (p = 0.0044) and multiple (p = 0.0021) SF-EV exposure. No differences were found in IGFBP-1 protein levels. In conclusion, SF-EVs enhance in vitro ESC decidualisation and increase secretion of prolactin, an essential hormone in implantation. This elucidates a novel role of SF-EVs on endometrial receptivity. Abbreviations: ECACC: European Collection of Authenticated Cell Cultures; ESCs: endometrial stromal cells; EVs: extracellular vesicles; FCS: foetal calf serum; HRP: horse-radish peroxidase; IFNγ: interferon-gamma; IGF: insulin-like growth factor; IGFBP-1: insulin-like growth factor binding protein 1; IVF: in vitro fertilisation; MVB: multivesicular bodies; NTA: nanoparticle tracking analysis; PRLR−/−: homozygous prolactin receptor knockout; RT: room temperature; SF-EVs: seminal fluid extracellular vesicles; STR: short tandem repeat; TGFβ: transforming growth factor β; uNK: uterine natural killer
Recurrent Pregnancy Loss (RPL) affects 2–4% of couples, and with increasing numbers of pregnancy losses the risk of miscarrying a euploid pregnancy is increased, suggesting RPL is a pathology distinct from sporadic miscarriage that is due largely to lethal embryonic aneuploidy. There are a number of conditions associated with RPL including unspecified “immune” pathologies; one of the strongest candidates for dysregulation remains T regulatory cells as depletion in the very early stages of pregnancy in mice leads to pregnancy loss. Human endometrial Treg and conventional CD4T cells were isolated during the peri-implantation period of the menstrual cycle in normal women. We identified an endometrial Treg transcriptomic signature and validated an enhanced regulatory phenotype compared to peripheral blood Treg. Parous women had an altered endometrial Treg transcriptome compared to nulliparity, indicating acquired immune memory of pregnancy within the Treg population, by comparison endometrial conventional CD4T cells were not altered. We compared primary and secondary RPL to nulliparous or parous controls respectively. Both RPL subgroups displayed differentially expressed Treg gene transcriptomes compared to controls. We found increased cell surface S1PR1 and decreased TIGIT protein expression by Treg in primary RPL, confirming the presence of altered Treg in the peri-implantation RPL endometrium.
Non-communicable diseases (NCDs) are a major problem as they are the leading cause of death and represent a substantial economic cost. The 'Developmental Origins of Health and Disease Hypothesis' proposes that adverse stimuli at different life stages can increase the predisposition to these diseases. In fact, adverse in utero programming is a major origin of these diseases due to the high malleability of embryonic development. This review provides a comprehensive analysis of the scientific literature on in utero programming and NCDs highlighting potential medical strategies to prevent these diseases based upon this programming. We fully address the concept and mechanisms involved in this programming (anatomical disruptions, epigenetic modifications and microbiota alterations). We also examine the negative role of in utero programming on the increased predisposition of NCDs in the offspring, which introduces the passive medical approach that consists of avoiding adverse stimuli including an unhealthy diet and environmental chemicals. Finally, we extensively discuss active medical approaches that target the causes of NCDs and have the potential to significantly and rapidly reduce the incidence of NCDs. These approaches can be classified as direct in utero programming modifications and personalized lifestyle pregnancy programs; they could potentially provide transgenerational NCDs protection. Active strategies against NCDs constitute a promising tool for the reduction in NCDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.