The synergy between dentistry and informatics has allowed the emergence of new technologies, specifically 3D printing, which has led to the development of new materials. The aim of this research was to compare the mechanical properties of dental base resins for 3D printing with conventional ones. This systematic review was developed using the PRISMA guidelines, and the electronic literature search was performed with the PubMed/MEDLINE, Web of Science—MEDLINE and EMBASE databases, until 30 April 2022. Two researchers selected the studies independently, and thus eight articles were found eligible for analysis. A meta-analysis was developed to estimate flexural strength. The Cohen’s kappa corresponding to this review was 1.00, and the risk assessment was considered low for the included studies. The 3D printing resin presented lower values of flexural strength and hardness compared with the heat-cured resin. Regarding impact strength, a lower value was recorded for the heat-cured resin compared with the 3D printing resin. Three-dimensional printing resins are viable materials for making prosthetic bases but need further clinical research.
Objectives: Commercial photocurable polymers used in dental additive manufacturing still have mechanical limitations. The incorporation of graphene may provide interesting advantages in this field. This study aimed to evaluate in vitro the effect of adding graphene nanoparticles to a 3D-printed polymethylmethacrylate dental resin in terms of surface roughness, flexural properties, and hardness. Methods: A 3D-printed dental resin (Dental Sand, Harz Lab) was loaded with four different graphene nanoplatelet (Graphenest) concentrations: 0.01wt%, 0.1wt%, 0.25wt%, and 0.5wt%. The neat resin was used as the control group. The surface roughness was measured with a contact profilometer using bar-shaped specimens (50x10x4mm). The flexural strength of specimens (80x10x4mm) from each group was calculated using the 3-point bending test in a Universal Test Machine. Hardness shore D was measured using a manual durometer on round-shaped specimens (12x6mm). Data were evaluated using the Kruskall-Wallis test followed by post-hoc Bonferroni corrected pairwise inter-group comparisons. Statistical significance was set at p<0.05. Results: Graphene improved 3D-printed PMMA resin hardness with statistical significance at a concentration of 0.01wt% (p=0.043). Surface roughness increased with graphene concentrations above 0.01wt%, with statistically significant differences at 0.25wt% (p=0.006) and 0.5wt% (p=0.005) concentrations. Flexural properties worsened with increased graphene concentrations, and these differences were significant in the concentrations of 0.25wt% (p=0.028) and 0.5wt% (p=0.006). Conclusions: The use of graphene as a mechanical reinforcement nanomaterial seems to be viable at low concentrations without prejudice to the surface roughness of a 3D-printed polymethylmethacrylate resin.
The present study aimed to test, in vitro, the antimicrobial activity against Candida albicans and Streptococcus mutans and the surface roughness of a 3D-printed polymethylmethacrylate dental resin enhanced with graphene. A 3D-printed polymethylmethacrylate dental resin was reinforced with four different concentrations of graphene: 0.01, 0.1, 0.25 and 0.5 wt%. Neat resin was used as a control. The specimens were printed in a liquid crystal display printer. Disc specimens were used in antimicrobial evaluation, and bar-shaped specimens were used to measure surface roughness. The study of antimicrobial activity included the inhibition of the growth of C. albicans and S. mutans and their adhesion to the resin’s surface. Surface roughness increased with the increase in the graphene concentration. The growth inhibition of C. albicans was observed in the different concentrations of graphene after 24 h, with no recovery after 48 h. The specimens doped with graphene were capable of inactivating S. mutans after 48 h. The surface-adhesion studies showed that the density of microbial biofilms decreases in the case of specimens doped with graphene. Graphene, despite increasing the resin’s surface roughness, was effective in inhibiting the growth and the adhesion to the resin’s surface of the main inducers of prosthetic stomatitis.
This investigation aims to determine the effect of the same polishing protocol on the surface roughness (Ra) of different resins obtained by different processing techniques. Acrylic resins obtained by CAD/CAM technology overcame the disadvantages identified in conventional materials. A total of thirty samples (six of each resin): self-cured, heat-polymerized, injection molded, CAD/CAM 3D-printed and CAD/CAM milled were prepared. JOTA® Kit 1877 DENTUR POLISH was used to polish the samples by two techniques: manual and mechanized, with a prototype for guided polishing exclusively developed for this investigation. The Ra was measured by a profilometer. The values were analyzed using ANOVA, Games–Howell post-hoc test and One-sample t-test, with p < 0.05. Manual polishing produces lower values of Ra compared to mechanized polishing, except for injected molded resins (p = 0.713). Manual polishing reveals significant differences between the resin pairs milling/3D-printing (p = 0.012) and thermopolymerizable/milling (p = 0.024). In the mechanized technique only, significant differences regarding the Ra values were found between the self-cured/3D-printed (p = 0.004) and self-cured/thermopolymerizable pair resins (p = 0.004). Differences in surface roughness values can be attributed to the inherent characteristics of the resin and the respective processing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.