Isogeometric analysis is a novel approach to numerical simulation that has the potential to bridge the gap between geometric design and numerical analysis. It uses the same exact geometry representation in all stages of the product development. In this paper we present recent results which demonstrate the competitiveness of the new concept in an industrial environment, more precisely, in the challenging field of aircraft engines. We study the deformation of turbine blades under the assumption of linear elasticity by considering all major loads and boundary conditions of a standard mechanical simulation process for turbine blades. We use the numerical approximations obtained by the classical finite element method as a benchmark for the capabilities of the new concept. It is shown that it is able to reach comparable results using only a small fraction of the number of degrees of freedom required by the classical method. Thus, isogeometric analysis allows using much coarser geometric representations for numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.