During investigations on the peroxidase-catalysed oxidation of polyhydroxylated monoaromatic substrates such as 5-methylpyrogallol, we observed a spectacular dimerisation proceeding by dearomatisation in contrast with most common reaction patterns involving phenolics oxidation and dimerization. A tetracyclic fused product featuring an unusual 2-oxatetracyclo [6.3.1.01,6.04,12] dodecan-3-one core was obtained and characterized by combined NMR techniques and high resolution mass spectroscopy (HRMS). This is an example of a spontaneous cascade triggered by a simple enzymatic reaction that could provide new options for biosynthetic hypothesis and a synthetic method to access this complex core in one operation.
Oakmoss absolute, a solvent extract from Evernia prunastri, is a valuable fragrance ingredient widely used in fine fragrance for almost two centuries. Some minor components of oakmoss absolute, such as atranol and chloroatranol, are attested contact allergens and their presence in fragrance and cosmetic products should be as low as possible. In this context, we have developed an enzyme-based protocol upon which these undesirable molecules are converted in a hydrosoluble dimeric material, and thus easily separated from the absolute by liquid–liquid extraction. Analytical and sensory analyses were performed to confirm the specificity of the process, the absence of alteration of the olfactory quality of the absolute, and the final titles of atranol and chloroatranol, which eventually were observed in the ppm range. This highly sustainable process is a viable alternative to conventional time-, energy-, and manpower-consuming techniques to produce very low-atranol oakmoss absolute.
Methyleugenol monodeuterated on the benzylic position, 4‐(1‐deuteroprop‐2‐enyl)‐1,2‐dimethoxybenzene, was synthesised in > 87% isotopic enrichment and in three steps from veratraldehyde. Key steps involved the reduction of veratraldehyde by LiAlD4 to install a single deuterium atom at the benzylic position and a Pd‐ or Ni‐catalyzed coupling of the corresponding monodeuterobenzyl chloride with vinyl magnesium bromide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.