Abstract. Since 2003, a monitoring program has been conducted on several glaciers and glacierets in the Pascua-Lama region of the Chilean Andes (29 • S/70 • W; 5000 m a.s.l.), permitting the study of glaciological processes on ice bodies in a subtropical, arid, high-elevation area where no measurements were previously available. In this paper we present: (1) six years of glaciological surface mass balance measurements from four ice bodies in the area, including a discussion of the nature of the studied glaciers and glacierets and characterization of the importance of winter mass balance to annual mass balance variability; and (2) changes in surface area of twenty ice bodies in the region since 1955, reconstructed from aerial photographs and satellite images, which shows that the total glaciated surface area reduced by ∼29 % between 1955 and 2007, and that the rate of surface area shrinkage increased in the late 20th century. Based on these datasets we present a first interpretation of glacier changes in relation with climatic parameters at both local and regional scales.
[1] The origin of sea-salt aerosol that reaches the high Antarctic plateau and is trapped in snow and ice cores remains still unclear. In particular, the respective role of emissions from the open ocean versus those from the sea-ice surface is not yet quantified. To progress on this question, the composition of bulk and size-segregated aerosol was studied in 2006 at the Concordia station (75°S, 123°E) located on the high Antarctic plateau. A depletion of sulfate relative to sodium with respect to the seawater composition is observed on sea-salt aerosol reaching Concordia from April to September. That suggests that in winter, when the sea-salt atmospheric load reaches a maximum, emissions from the sea-ice surface significantly contribute to the sea-salt budget of inland Antarctica.
Abstract. Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes.Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average.Regarding avalanche activity, a general decrease in mean (20-30 %) and interannual variability is projected. These changes are relatively strong compared to changes in snow and meteorological variables. The decrease is amplified in spring and at low altitude. In contrast, an increase in avalanche activity is expected in winter at high altitude because of conditions favourable to wet-snow avalanches earlier in the season. Comparison with the outputs of the deterministic avalanche hazard model MEPRA (Modèle Expert d'aide à la Prévision du Risque d'Avalanche) shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity is clearly projected to decrease, the decreasing trend may be less strong and smooth than suggested by the statistical analysis based on changes in snowpack characteristics and their links to avalanches observations in the past. This important point for risk assessment pleads for further work focusing on shorter timescales. Finally, the small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.