Summary1. Using trait-based approaches to study trophic interactions may represent one of the most promising approaches to evaluate the impact of trophic interactions on ecosystem functioning. To achieve this goal, it is necessary to clearly identify which traits determine the impact of one trophic level on another. 2. Using functionally contrasting grasshopper species, we tested the ability of multiple traits (morphological, chemical and biomechanical) to predict herbivore impact on the biomass of a diverse plant community. We set-up a cage experiment in an old species rich grassland field and evaluated how multiple candidate grasshopper effect traits mediated herbivore impact on plant biomass. 3. Grasshoppers had different impact on plant community biomass (consuming up to 60% of plant community biomass). Grasshopper impact was positively correlated with their incisive strength while body size or grasshopper C:N ratio exhibited low predictive ability. Importantly, the strong relationship between the incisive strength and the impact was mediated by the grasshopper feeding niche, which was well predicted in our study by two simple plant traits (leaf dry matter content, leaf C:N ratio). Feeding niche differences between grasshoppers were explained by differences in incisive strength, highlighting the fundamental linkage between grasshopper effect traits and their niche. 4. Our study contributes to the development of the trait-based approach in the study of trophic interactions by providing a first experimental test of the relationship between herbivore effect traits, their impact on plant community biomass, and in a larger extent on ecosystem functioning. By comparing the relative importance of multiple interacting grasshopper traits, our study showed that incisive strength was a key effect trait which determined grasshopper feeding niche and its relative impact on plant community biomass.
Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.