New reactive-surfactants, N-alkylglucosylacrylamides and N-alkylglucosylmethacrylamides, are easily prepared in two steps from glucose without protection. The complete structural analysis of these compounds by 1D and 2D NMR spectroscopy shows the existence of a rotational isomerism that is strongly dependent on the steric hindrance of the carbonyl substituent: whatever the alkyl chain length, both endo and exo rotamers are observed for N-alkylglucosylacrylamides 1 while the endo rotamer is the sole species observed in the case of N-alkylglucosylmethacrylamides 2. For acrylamido derivatives 1, the exo-endo equilibrium is solvent-dependent: the endo isomer is favored in polar nonaqueous solvents (endo-exo isomeric ratio R = 70/30) while the equilibrium is shifted toward the exo rotamer in protic acidic medium (R = 50/50 in water and 80/20 in acidic medium). An intramolecular hydrogen bond is assumed to be responsible for the increased stability of the endo rotamer. Furthermore, for tetra-O-acetylated derivatives the exo rotamer becomes favored in aprotic solvents. Surface tension measurements demonstrate that N-octyl- to -tetradecyl-substituted compounds 1 and 2 are surfactants with critical micelle concentrations ranging from 1.2 x 10(-2) to 1.7 x 10(-5) mol/L.
A new donor–acceptor dyad composed of a BODIPY (4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor–acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump–probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.