The former Vaux-en-Bugey field, first French methane production from early 20th century, is revisited as a case study to address the present generation and accumulation theories for gases like hydrogen and helium. The volume of the initial gas in place is estimated to be 22 million m3. Based on a composition of 5% of hydrogen and 0.096% of helium, the volumes of these gases in the field were respectively around 1.1 million m3 for hydrogen and 24 000 m3 for helium. The different hypotheses of hydrogen sources are reviewed: serpentinization, hydro-oxidation of siderite, water radiolysis, bio-fermentation, mechanical generation, degassing from depth trough faults, steel corrosion. For helium generation, the different sources of radioactive minerals and intermediate accumulations are examined. The most probable scenario is the hydrogen production by water radiolysis and helium production by radioactive decay in or near the basement, migrating trough deep faults, stored and concentrating in an aquifer with thermogenic methane, then flushed by methane into the gas field, during Jura thrusting. New measurements with portable gas detector, incomplete but including hydrogen, on a former exploration well with accessible flux of gas, give the opportunity to comment gas saturation evolution more than a century after the 1906 discovery. The decreasing of hydrogen content since the discovery of the field is probably due to Sulphate-Reducing Bacteria activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.