Molecular analysis of the cadherin-catenin complex elucidated the central role of beta-catenin in this adhesion complex, as it binds to the cytoplasmic domain of E-cadherin and to alpha-catenin. beta-Catenin may also function in signalling pathways, given its homology to the gene product of the Drosophila segment polarity gene armadillo, which is known to be involved in the wingless signalling cascade. To study the function of beta-catenin during mouse development, gene knock-out experiments were performed in embryonic stem cells and transgenic mice were generated. beta-Catenin null-mutant embryos formed blastocysts, implanted and developed into egg-cylinder-stage embryos. At day 7 post coitum, the development of the embryonic ectoderm was affected in mutant embryos. Cells detached from the ectodermal cell layer and were dispersed into the proamniotic cavity. No mesoderm formation was observed in mutant embryos. The development of extraembryonic structures appeared less dramatically or not at all affected. Our results demonstrate that, although beta-catenin is expressed rather ubiquitously, it is specifically required in the ectodermal cell layer.
Imprinted genomic regions have been defined by the production of mice with uniparental inheritance or duplication of homologous chromosome regions. With most of the genome investigated, paternal duplication of only distal chromosomes 7 and 12 results in the lack of offspring, and prenatal lethality is presumed. Aberrant expression of imprinted genes in these two autosomal regions is therefore strongly implicated in the periimplantation lethality of androgenetic embryos. We report that mouse embryos with paternal duplication of distal chromosome 7 (PatDup.d7) die at midgestation and lack placental spongiotrophoblast. Thus, the much earlier death of androgenones must involve paternal duplication of other autosomal regions, acting independently of or synergistically with PatDup.d7. The phenotype observed is similar, if not identical to, that resulting from mutation of the imprinted distal chromosome 7 gene, Mash2, which in normal midgestation embryos exhibits spongiotrophoblast-specific maternally active/paternally inactive (m+/p-) allelic expression. Thus, the simplest explanation for the PatDup.d7 phenotype is p-/p- expression of this gene. We also confirm that PatDup.d7 embryos lack H19 RNA and posses excess Igf2 RNA as might be expected from the parental-specific activities of these genes in normal embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.