Gallotannins extracted from gallnuts are commonly added to wine to improve its properties. They consist of mixtures of galloylester derivatives of glucose. However, their composition and properties are not well-established. In this study, methods based on liquid chromatography coupled to ultraviolet–visible detection and mass spectrometry, size-exclusion chromatography, and one-dimensional (31P) and two-dimensional (1H diffusion ordered spectroscopy, 31P total correlated spectroscopy, and 1H/13C heteronuclear single-quantum correlation and heteronuclear multiple-bond correlation) nuclear magnetic resonance spectroscopies have been implemented for extensive chemical characterization of three commercial gallnut tannin extracts. Differences in the proportions of the different constituents (gallic, digallic, and trigallic acids and galloylglucose derivatives) and in the structure and molecular weight distributions of gallotannins were demonstrated between the three extracts, with chains containing 8.5, 12.2, and 12.4 galloyl groups on average for TAN A, TAN B1, and TAN B2, respectively. The antioxidant capacities of the extracts, evaluated using the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method, were similar and related mostly to their total tannin content, with only a limited impact of the tannin composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.