Background-One mechanism by which extracellular field shocks (ECFSs) defibrillate the heart is by producing changes in membrane potential (V m ) at tissue discontinuities. Such virtual electrodes may produce new excitation waves or affect locally propagating action potentials. The rise time of V m determines the required duration of a single defibrillation pulse to reach a critical threshold for activation or for the modification of ion channel function, and depends on the electric and microstructural characteristics of the tissue. Methods and Results-We used optical mapping of V m in patterned cultures of neonatal rat ventricular myocytes to assess the relationship between cardiac structure and the early time course of V m during ECFSs. At monolayer boundaries, the time course of V m showed a close fit to the theoretical change predicted by theory, with a membrane time constant of 2.65Ϯ0.19 ms (nϭ13) and a length constant of 159Ϯ6 m (nϭ10). Experiments in patterned strands, mimicking the resistive boundaries that occur naturally in the heart, explained the observation that the rate of rise and the maximal amplitudes of the V m changes are inversely related because of electrotonic interactions between structural boundaries. Interrupting ECFSs by very short intervals diminished V m , but did not cause major changes in its overall time course. Conclusions-Interaction between virtual sinks and sources decreases the magnitude of the changes in V m but accelerates its time course. For efficient defibrillation, short ECFSs are needed, with an amplitude adapted to match the boundary interaction. (Circ Arrhythm Electrophysiol. 2012;5:391-399.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.