BackgroundAmyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series.Methods and findingsWe report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification.ConclusionsOur findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants.
In this study, we report the clinical features of Kelch-like protein 11 antibody-associated paraneoplastic neurological syndrome, design and validate a clinical score to facilitate the identification of patients that should be tested for Kelch-like protein 11 antibodies, and examine in detail the nature of the immune response in both the brain and the tumour samples for a better characterization of the immunopathogenesis of this condition. The presence of Kelch-like protein 11 antibodies was retrospectively assessed in patients referred to the French Reference Center for paraneoplastic neurological syndrome and autoimmune encephalitis with (i) antibody-negative paraneoplastic neurological syndrome [limbic encephalitis (n = 105), cerebellar degeneration (n = 33)] and (ii) antibody-positive paraneoplastic neurological syndrome [Ma2-Ab encephalitis (n = 34), antibodies targeting N-methyl-D-aspartate receptor encephalitis with teratoma (n = 49)]. Additionally, since 1 January 2020, patients were prospectively screened for Kelch-like protein 11 antibodies as new usual clinical practice. Overall, Kelch-like protein 11 antibodies were detected in 11 patients [11/11, 100% were male; their median (range) age was 44 (35–79) years], 9 of them from the antibody-negative paraneoplastic neurological syndrome cohort, 1 from the antibody-positive (Ma2-Ab) cohort and 1 additional prospectively detected patient. All patients manifested a cerebellar syndrome, either isolated (4/11, 36%) or part of a multi-system neurological disorder (7/11, 64%). Additional core syndromes were limbic encephalitis (5/11, 45%) and myelitis (2/11, 18%). Severe weight loss (7/11, 64%) and hearing loss/tinnitus (5/11, 45%) were common. Rarer neurologic manifestations included hypersomnia and seizures (2/11, 18%). Two patients presented phenotypes resembling primary neurodegenerative disorders (progressive supranuclear palsy and flail arm syndrome, respectively). An associated cancer was found in 9/11 (82%) patients; it was most commonly (7/9, 78%) a spontaneously regressed (‘burned-out’) testicular germ cell tumour. A newly designed clinical score (MATCH score: male, ataxia, testicular cancer, hearing alterations) with a cut-off ≥4 successfully identified patients with Kelch-like protein 11 antibodies (sensitivity 78%, specificity 99%). Pathological findings (three testicular tumours, three lymph node metastases of testicular tumours, one brain biopsy) showed the presence of a T-cell inflammation with resulting anti-tumour immunity in the testis and one chronic, exhausted immune response—demonstrated by immune checkpoint expression—in the metastases and the brain. In conclusion, these findings suggest that Kelch-like protein 11 antibody paraneoplastic neurological syndrome is a homogeneous clinical syndrome and its detection can be facilitated using the MATCH score. The pathogenesis is probably T-cell mediated, but the stages of inflammation are different in the testis, metastases and the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.