Abstract. In this paper we investigate algorithms based on the Fast Legendre Transform (FLT) in order to compute tabulated Equation Of State (EOS) for fluids with phase transition. The equation of state of a binary mixture is given by an energy minimization principle. According to the miscible or immiscible nature of the mixture, the energy of the system is either a convex envelope or an inf-convolution of the energies of the two phases. Because these operations are closely linked to Legendre Transform, it is possible to construct O(N ) algorithms that compute efficiently these operations, where N is the number of points in the table. In addition, it appears that the natural mathematical tool for studying mixture thermodynamics in the Legendre space is the max-plus algebra theory.
This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid and its vapor. Since the gas and the vapor are miscible, the mixture is subjected to a non-symmetric constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium entropy of the system allows to recover the Dalton's law between the two gaseous phases. In addition, we distinguish whether phase transition occurs or not between the liquid and its vapor. The thermodynamical equilibria are described both in extensive and intensive variables. In the latter case, we focus on the geometrical properties of equilibrium entropy. The consistent characterization of the thermodynamics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM) depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM) for the three-phase mixtures with and without phase transition. Supplementary equations on mass, volume and energy fractions are considered with appropriate source terms which model the relaxation towards the thermodynamical equilibrium, in agreement with entropy growth criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.