In this paper we study a system of nonlinear partial differential equations, which describes the evolution of two pedestrian groups moving in opposite direction. The pedestrian dynamics are driven by aversion and cohesion, i.e. the tendency to follow individuals from the own group and step aside in the case of contraflow. We start with a 2D lattice based approach, in which the transition rates reflect the described dynamics, and derive the corresponding PDE system by formally passing to the limit in the spatial and temporal discretization. We discuss the existence of special stationary solutions, which correspond to the formation of directional lanes and prove existence of global in time bounded weak solutions. The proof is based on an approximation argument and entropy inequalities. Furthermore we illustrate the behavior of the system with numerical simulations.
Abstract. In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this properties with various examples in spatial dimension one and two.
In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting crossdiffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.