We harnessed the hygroscopic and biofluorescent behaviors of microbial cells to design sweat-responsive biohybrid wearables.
Figure 1: Example applications. (a) Living teabags; (b) "Second Skin" as responsive clothing; (c) Animated origami toys; (d) Artificial plants that change both form and color; (e) Transformable lampshade. ABSTRACTNature has engineered its own actuators, as well as the efficient material composition, geometry and structure to utilize its actuators and achieve functional transformation. Based on the natural phenomenon of cells' hygromorphic transformation, we introduce the living Bacillus Subtilis natto cell as a humidity sensitive nanoactuator. In this paper, we unfold the process of exploring and comparing cell types that are proper for HCI use, the development of the composite biofilm, the development of the responsive structures, the control setup for actuating biofilms, and a simulation and fabrication platform. Finally, we provide a variety of application designs, with and without computer control to demonstrate the potential of our bio actuators. Through this paper, we intend to enable the use of natto cells and our platform technologies for HCI researchers, designers and bio-hackers. More generally, we try to encourage the research and use of biological responsive materials and interdisciplinary research in HCI.
The COVID-19 pandemic has challenged diagnostic systems globally. Expanding testing capabilities to conduct population-wide screening for COVID-19 requires innovation in diagnostic services at both the molecular and industrial scale. No report to-date has considered the complexity of laboratory infrastructure in conjunction with the available molecular assays to offer a standardised solution to testing. Here we present CONTAIN. A modular biosafety level 2+ laboratory optimised for automated testing based on a standard 40ft shipping container. Using open-source liquid-handling robots and RNA extraction reagents we demonstrate a reproducible workflow for RT-qPCR COVID-19 testing. With five OT2 liquid handlers, a single CONTAIN unit reaches a maximum daily testing capacity of 2400 tests/day. We validate this workflow for automated RT-qPCR testing, using both synthetic SARS-CoV-2 samples and patient samples from a local NHS hospital. Finally, we discuss the suitability of CONTAIN and its flexibility in a range of diagnostic testing scenarios including high-density urban environments and mobile response units. Visual abstractCONTAIN: An open-source shipping container laboratory optimised for automated COVID-19 diagnostics
Multiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK. Given the breadth of potential research, a targeted agenda identifying the questions most critical to effective and coordinated progress in different disciplines of biological security is required. We used expert elicitation to generate 80 policy-relevant research questions considered by participants to have the greatest impact on UK biological security. Drawing on a collaboratively-developed set of 450 questions, proposed by 41 experts from academia, industry and the UK government (consulting 168 additional experts) we subdivided the final 80 questions into six categories: bioengineering; communication and behaviour; disease threats (including pandemics); governance and policy; invasive alien species; and securing biological materials and securing against misuse. Initially, the questions were ranked through a voting process and then reduced and refined to 80 during a one-day workshop with 35 participants from a variety of disciplines. Consistently emerging themes included: the nature of current and potential biological security threats, the efficacy of existing management actions, and the most appropriate future options. The resulting questions offer a research agenda for biological security in the UK that can assist the targeting of research resources and inform the implementation of the UK Biological Security Strategy. These questions include research that could aid with the mitigation of Covid-19, and preparation for the next pandemic. We hope that our structured and rigorous approach to creating a biological security research agenda will be replicated in other countries and regions. The world, not just the UK, is in need of a thoughtful approach to directing biological security research to tackle the emerging issues.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.