Spatial management of stress-induced protein aggregation is an integral part of the proteostasis network. Protein modification by the ubiquitin-like molecule NEDD8 increases upon proteotoxic stress and it is characterised by the formation of hybrid NEDD8/ubiquitin conjugates. However, the biological significance of this response is unclear. Combination of quantitative proteomics with biological analysis shows that, during proteotoxic stress, NEDDylation promotes nuclear protein aggregation, including ribosomal proteins as a major group. This correlates with protection of the nuclear Ubiquitin Proteasome System from stress-induced dysfunction. Correspondingly, we show that NEDD8 compromises ubiquitination and prevents targeting and processing of substrates by the proteasome. Moreover, we identify HUWE1 as a key E3-ligase that is specifically required for NEDDylation during proteotoxic stress. The study reveals a specific role for NEDD8 in nuclear protein aggregation upon stress and is consistent with the concept that transient aggregate formation is part of a defence mechanism against proteotoxicity.
SOX9 inactivation is frequent in colorectal cancer (CRC) due to SOX9 gene mutations and/or to ectopic expression of MiniSOX9, a dominant negative inhibitor of SOX9. In the present study, we report a heterozygous L142P inactivating mutation of SOX9 in the DLD-1 CRC cell line and we demonstrate that the conditional expression of a wild type SOX9 in this cell line inhibits cell growth, clonal capacity and colonosphere formation while decreasing both the activity of the oncogenic Wnt/ß-catenin signaling pathway and the expression of the c-myc oncogene. This activity does not require SOX9 transcriptional function but, rather, involves an interaction of SOX9 with nuclear ß-catenin. Furthermore, we report that SOX9 inhibits tumor development when conditionally expressed in CRC cells injected either subcutaneous or intraperitoneous in BALB/c mice as an abdominal metastasis model. These observations argue in favor of a tumor suppressor activity for SOX9. As an siRNA targeting SOX9 paradoxically also inhibits DLD-1 and HCT116 CRC cell growth, we conclude that there is a critical level of endogenous active SOX9 needed to maintain CRC cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.