The field of eco‐evolutionary dynamics is developing rapidly, with a growing number of well‐designed experiments quantifying the impact of evolution on ecological processes and patterns, ranging from population demography to community composition and ecosystem functioning. The key challenge remains to transfer the insights of these proof‐of‐principle experiments to natural settings, where multiple species interact and the dynamics are far more complex than those studied in most experiments. Here, we discuss potential pitfalls of building a framework on eco‐evolutionary dynamics that is based on data on single species studied in isolation from interspecific interactions, which can lead to both under‐ and overestimation of the impact of evolution on ecological processes. Underestimation of evolution‐driven ecological changes could occur in a single‐species approach when the focal species is involved in co‐evolutionary dynamics, whereas overestimation might occur due to increased rates of evolution following ecological release of the focal species. In order to develop a multi‐species perspective on eco‐evolutionary dynamics, we discuss the need for a broad‐sense definition of “eco‐evolutionary feedbacks” that includes any reciprocal interaction between ecological and evolutionary processes, next to a narrow‐sense definition that refers to interactions that directly feed back on the interactor that evolves. We discuss the challenges and opportunities of using more natural settings in eco‐evolutionary studies by gradually adding complexity: (a) multiple interacting species within a guild, (b) food web interactions and (c) evolving metacommunities in multiple habitat patches in a landscape. A literature survey indicated that only a few studies on microbial systems so far developed a truly multi‐species approach in their analysis of eco‐evolutionary dynamics, and mostly so in artificially constructed communities. Finally, we provide a road map of methods to study eco‐evolutionary dynamics in more natural settings. Eco‐evolutionary studies involving multiple species are necessarily demanding and might require intensive collaboration among research teams, but are highly needed. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13261/suppinfo is available for this article.
Many studies document genetic and phenotypic trait changes of species in response to climate change, or document how evolution of individual species can impact population abundances and community composition. An integration of population and community-level responses requires, however, a multiple species approach. Here we quantify among-and within-species differences in thermal tolerance and life-history traits in three co-occurring Daphnia species upon exposure to a naturally occurring heat wave. Populations of randomly isolated clones of Daphnia magna, Daphnia pulicaria, and Daphnia galeata from the same pond were exposed to a natural heat wave in outdoor mesocosms. We subsequently conducted a common garden experiment in the laboratory using clonal lineages isolated at the end of the mesocosm selection experiment, at two rearing temperatures, measuring thermal tolerance and life-history traits. We find pronounced plasticity responses to higher rearing thermal regime in each study species. We observe only few significant microevolutionary responses involving evolution of plasticity in D. pulicaria. Yet in terms of effect size, evolutionary trait change within species contributes more than 25% to total trait change in response to the heat wave for a majority of the trait × species combinations. The relative importance of intraspecific to interspecific variation varies widely among traits. Our results show that the relative importance of interspecific variation, phenotypic plasticity, and evolutionary trait change differs strongly depending on the set of species and traits studied. Taking into account this variation at different levels of biological organization is important to predict community-wide responses to global change. Climate change is profoundly affecting biota on a global scale, impacting ecosystems and their functioning worldwide (IPCC 2014). The impact of climate change is manifested at all biological levels, ranging from genetic changes, changes in physiology, morphology, behavior, and life-history traits of populations, to alterations in populations dynamics, changes in community structure and biodiversity, and changes in
Zooplankton body size shows a strong association with temperature, competition, and predation. Global warming affects all three drivers of body size and is thus expected to lead to substantial changes in zooplankton community composition and body size distributions. To disentangle the isolated and joint effect of temperature, competition, and fish predation on species biomass and community composition in zooplankton, we monitored population biomasses of three Daphniidae species that differ in body size (Daphnia magna, Daphnia pulex, and Ceriodaphnia reticulata) for 20 days, manipulating competition (monoculture, pairwise trials, and three-species communities), temperature (20 C, 24 C, and 28 C) and presence or absence of fish predation. In the absence of predation, D. magna dominated in all competition experiments, even at high temperatures. D. magna went extinct, however, in the predation treatments at 24 C and 28 C. D. pulex outcompeted C. reticulata and was negatively affected by predation and high temperature. C. reticulata did not reduce biomass at high temperatures and was negatively affected by all competition trials, but was positively affected by predation. Our results indicate that the two larger-bodied species are more negatively affected by the combination of temperature and predation than the smallest species. While higher temperatures reduced the biomass of the larger-bodied species, it did not fundamentally change their ability to dominate over the smallest species in competition. The combined effect of warming and predation changed community composition more fundamentally, resulting in the dominance of small-bodied species. This can have important ecosystem-wide impacts, such as the transition to turbid, algae-dominated systems.
Global warming challenges the persistence of local populations, not only through heat‐induced stress, but also through indirect biotic changes. We study the interactive effects of temperature, competition and parasitism in the water flea Daphnia magna. We carried out a common garden experiment monitoring the dynamics of Daphnia populations along a temperature gradient. Halfway through the experiment, all populations became infected with the ectoparasite Amoebidium parasiticum, enabling us to study the interactive effects of temperature and parasite dynamics. We combined Integral Projection Models with epidemiological models, parameterized using the experimental data on the performance of individuals within dynamic populations. This enabled us to quantify the contribution of different vital rates and epidemiological parameters to population fitness across temperatures and Daphnia clones originating from two latitudes. Interactions between temperature and parasitism shaped competition, where Belgian clones performed better under infection than Norwegian clones. Infected Daphnia populations performed better at higher than at lower temperatures, mainly due to an increased host capability of reducing parasite loads. Temperature strongly affected individual vital rates, but effects largely cancelled out on a population‐level. In contrast, parasitism strongly reduced fitness through consistent negative effects on all vital rates. As a result, temperature‐mediated parasitism was more important than the direct effects of temperature in shaping population dynamics. Both the outcome of the competition treatments and the observed extinction patterns support our modelling results. Our study highlights that shifts in biotic interactions can be equally or more important for responses to warming than direct physiological effects of warming, emphasizing that we need to include such interactions in our studies to predict the competitive ability of natural populations experiencing global warming. A free Plain Language Summary can be found within the Supporting Information of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.