SummaryLegumes played central roles in the development of agriculture and civilization, and today account for approximately one-third of the world's primary crop production. Unfortunately, most cultivated legumes are poor model systems for genomic research. Therefore, Medicago truncatula, which has a relatively small diploid genome, has been adopted as a model species for legume genomics. To enhance its value as a model, we have generated a gene expression atlas that provides a global view of gene expression in all major organ systems of this species, with special emphasis on nodule and seed development. The atlas reveals massive differences in gene expression between organs that are accompanied by changes in the expression of key regulatory genes, such as transcription factor genes, which presumably orchestrate genetic reprogramming during development and differentiation. Interestingly, many legume-specific genes are preferentially expressed in nitrogen-fixing nodules, indicating that evolution endowed them with special roles in this unique and important organ. Comparative transcriptome analysis of Medicago versus Arabidopsis revealed significant divergence in developmental expression profiles of orthologous genes, which indicates that phylogenetic analysis alone is insufficient to predict the function of orthologs in different species. The data presented here represent an unparalleled resource for legume functional genomics, which will accelerate discoveries in legume biology.
A comparative study of proteome and transcriptome changes during Medicago truncatula (cultivar Jemalong) seed development has been carried out. Transcript and protein profiles were parallel across the time course for 50% of the comparisons made, but divergent patterns were also observed, indicative of post-transcriptional events. These data, combined with the analysis of transcript and protein distribution in the isolated seed coat, endosperm, and embryo, demonstrated the major contribution made to the embryo by the surrounding tissues. First, a remarkable compartmentalization of enzymes involved in methionine biosynthesis between the seed tissues was revealed that may regulate the availability of sulfur-containing amino acids for embryo protein synthesis during seed filling. This intertissue compartmentalization, which was also apparent for enzymes of sulfur assimilation, is relevant to strategies for modifying the nutritional value of legume seeds. Second, decreasing levels during seed filling of seed coat and endosperm metabolic enzymes, including essential steps in Met metabolism, are indicative of a metabolic shift from a highly active to a quiescent state as the embryo assimilates nutrients. Third, a concomitant persistence of several proteases in seed coat and endosperm highlighted the importance of proteolysis in these tissues as a supplementary source of amino acids for protein synthesis in the embryo. Finally, the data revealed the sites of expression within the seed of a large number of transporters implied in nutrient import and intraseed translocations. Several of these, including a sulfate transporter, were preferentially expressed in seeds compared with other plant organs. These findings provide new directions for genetic
The RNA exosome is the major 3′-5′ RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.
Degradation of mRNAs is usually initiated by deadenylation, the shortening of long poly(A) tails to oligo(A) tails of 12–15 As. Deadenylation leads to decapping and to subsequent 5′ to 3′ degradation by XRN proteins, or alternatively 3′ to 5′ degradation by the exosome. Decapping can also be induced by uridylation as shown for the non-polyadenylated histone mRNAs in humans and for several mRNAs in Schizosaccharomyces pombe and Aspergillus nidulans. Here we report a novel role for uridylation in preventing 3′ trimming of oligoadenylated mRNAs in Arabidopsis. We show that oligo(A)-tailed mRNAs are uridylated by the cytosolic UTP:RNA uridylyltransferase URT1 and that URT1 has no major impact on mRNA degradation rates. However, in absence of uridylation, oligo(A) tails are trimmed, indicating that uridylation protects oligoadenylated mRNAs from 3′ ribonucleolytic attacks. This conclusion is further supported by an increase in 3′ truncated transcripts detected in urt1 mutants. We propose that preventing 3′ trimming of oligo(A)-tailed mRNAs by uridylation participates in establishing the 5′ to 3′ directionality of mRNA degradation. Importantly, uridylation prevents 3′ shortening of mRNAs associated with polysomes, suggesting that a key biological function of uridylation is to confer 5′ to 3′ polarity in case of co-translational mRNA decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.