The development and application of nanoparticles as in vivo delivery vehicles for therapeutic and/or diagnostic agents has seen a drastic growth over the last decades. Novel imaging techniques allow real-time in vivo study of nanoparticle accumulation kinetics at the level of the cell and targeted tissue. Successful intravenous application of such nanocarriers requires a hydrophilic particle surface coating, of which polyethylene glycol (PEG) has become the most widely studied and applied. In the current study, the effect of nanoparticle PEG surface density on the targeting efficiency of ligand-functionalized nanoemulsions was investigated. We synthesized 100 nm nanoemulsions with a PEG surface density varying from 5 to 50 mol%. Fluorescent and paramagnetic lipids were included to allow their multimodal detection, while RGD peptides were conjugated to the PEG coating to obtain specificity for the αvβ3-integrin. The development of a unique experimental imaging setup allowed us to study, in real time, nanoparticle accumulation kinetics at (sub)-cellular resolution in tumors that were grown in a window chamber model with confocal microscopy imaging, and at the macroscopic tumor level in subcutaneously grown xenografts with magnetic resonance imaging. Accumulation in the tumor occurred more rapidly for the targeted nanoemulsions than for the non-targeted versions, and the PEG surface density had a strong effect on nanoparticle targeting efficiency. Counter intuitively, yet consistent with the PEG density conformation models, the highest specificity and targeting efficiency was observed at a low PEG surface density.
BackgroundThe histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials.MethodsRadiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models.ResultsUnder hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth.ConclusionsVorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.
In colorectal cancer, immune effectors may be determinative for disease outcome. Following curatively intended combined-modality therapy in locally advanced rectal cancer metastatic disease still remains a dominant cause of failure. Here, we investigated whether circulating immune factors might correlate with outcome. An antibody array was applied to assay changes of approximately 500 proteins in serial serum samples collected from patients during oxaliplatin-containing induction chemotherapy and sequential chemoradiotherapy before final pelvic surgery. Array data was analyzed by the Significance Analysis of Microarrays software and indicated significant alterations in serum osteoprotegerin (TNFRSF11B) during the treatment course, which were confirmed by osteoprotegerin measures using a single-parameter immunoassay. Patients experiencing increase in circulating osteoprotegerin during the chemotherapy had significantly better 5-year progression-free survival than those without increase (78% versus 48%; P = 0.009 by log-rank test). Hence, systemic release of this soluble tumor necrosis factor decoy receptor following the induction phase of neoadjuvant therapy was associated with favorable long-term outcome in patients given curatively intended chemoradiotherapy and surgery but with metastatic disease as the main adverse event. This finding suggests that osteoprotegerin may mediate or reflect systemic anti-tumor immunity invoked by combined-modality therapy in locally advanced rectal cancer.
BackgroundLocally advanced rectal cancer (LARC) comprises heterogeneous tumours with predominant hypoxic components. The hypoxia-inducible metabolic shift causes microenvironmental acidification generated by carbonic anhydrase IX (CAIX) and facilitates metastatic progression, the dominant cause of failure in LARC.MethodsUsing a commercially available immunoassay, circulating CAIX was assessed in prospectively archived serial serum samples collected during combined-modality neoadjuvant treatment of LARC patients and correlated to histologic tumour response and progression-free survival (PFS).ResultsPatients who from their individual baseline level displayed serum CAIX increase above a threshold of 224 pg/ml (with 96 % specificity and 39 % sensitivity) after completion of short-course neoadjuvant chemotherapy (NACT) prior to long-course chemoradiotherapy and definitive surgery had significantly better 5-year PFS (94 %) than patients with below-threshold post-NACT versus baseline alteration (PFS rate of 56 %; p < 0.01). This particular CAIX parameter, ΔNACT, was significantly correlated with histologic ypT0–2 and ypN0 outcome (p < 0.01) and remained an independent PFS predictor in multivariate analysis wherein it was entered as continuous variable (p = 0.04).ConclusionsOur results indicate that low ΔNACT, i.e., a weak increase in serum CAIX level following initial neoadjuvant treatment (in this case two cycles of the Nordic FLOX regimen), might be used as risk-adapted stratification to postoperative therapy or other modes of intensification of the combined-modality protocol in LARC.Trial registrationClinicalTrials.gov NCT00278694Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1557-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.