There are several controversies concerning the organization and induction of postural adjustments in standing humans. Some investigators suggest the responses are triggered by somatosensory inputs (especially from the ankle in standing subjects), while others emphasize the vestibular input induced by head acceleration. We examined postural responses in sitting subjects in order to describe the muscle activation pattern during various perturbations and to test whether somatosensory or vestibular stimulation elicited the responses. The kinematics and EMG patterns in response to perturbations caused by movements of the support surface were studied in adults. The postural muscle activation following a backward sway was mainly the same, whether it was elicited by a forward translation or a legs-up rotation. This is remarkable, since, except for pelvis rotation, the movements of all body segments including the head differed in the two conditions. Furthermore, a second experiment showed that the direction of the initial head movement could be reversed with retainment of the same postural muscle activation pattern. The results suggest that somatosensory signals derived from the backward rotation of the pelvis, and not vestibular information from the head, trigger postural responses during sitting. There was a slight but consistent difference in the muscle activation pattern, whether the backward sway was elicited by a forward translation or legs-up rotation. The difference seemed to reflect the sensory information from head and other body parts (except the pelvis). This finding allowed us to speculate in a central pattern generator for postural adjustments containing two levels. At the first level, a simple format of the muscle activation would be generated; at the second level, the centrally generated pattern could be shaped and timed by interaction from the entire somatosensory, vestibular, and visual input.
The results suggest that the Functional Reach test is a weak measure of the stability limits. Movement of the trunk seems to influence the test more than the displacement of the centre of pressure. When using the Functional Reach test for assessing balance, compensatory mechanisms should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.