Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5P P-O-(3-thio)triphosphate (GTPQ QS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.z 1999 Federation of European Biochemical Societies.
Rho GTPases are implicated in a multitude of cellular processes regulated by membrane receptors, such as cytoskeletal rearrangements, gene transcription and cell growth and motility. Activation of these GTPases is under the direct control of guanine nucleotide exchange factors (GEFs), the Dbl family proteins. By searching protein databases we have identified a novel Rho-GEF, termed p114-Rho-GEF, which similarly to other Rho-GEFs contains a Dbl homology domain followed by a pleckstrin homology domain. p114-Rho-GEF interacted specifically with RhoA, in its nucleotide-free and guanosine 5'-[gamma-thio]triphosphate-bound states, but not with Rac1 and Cdc42, and efficiently catalysed guanine nucleotide exchange of RhoA. Consistent with these results in vitro was our finding that the overexpression of p114-Rho-GEF in J82 and HEK-293 cells induced the formation of actin stress fibres and stimulated serum-response-factor-mediated gene transcription in a Rho-dependent manner. Rho-mediated transcriptional activation induced by M(3) muscarinic acetylcholine and lysophosphatidic acid receptors was enhanced by p114-Rho-GEF, suggesting that the activity of this novel Rho-GEF, which is widely expressed in human tissues, can be controlled by G-protein-coupled receptors.
Rho GTPases are implicated in a multitude of cellular processes regulated by membrane receptors, such as cytoskeletal rearrangements, gene transcription and cell growth and motility. Activation of these GTPases is under the direct control of guanine nucleotide exchange factors (GEFs), the Dbl family proteins. By searching protein databases we have identified a novel Rho-GEF, termed p114-Rho-GEF, which similarly to other Rho-GEFs contains a Dbl homology domain followed by a pleckstrin homology domain. p114-Rho-GEF interacted specifically with RhoA, in its nucleotide-free and guanosine 5'-[gamma-thio]triphosphate-bound states, but not with Rac1 and Cdc42, and efficiently catalysed guanine nucleotide exchange of RhoA. Consistent with these results in vitro was our finding that the overexpression of p114-Rho-GEF in J82 and HEK-293 cells induced the formation of actin stress fibres and stimulated serum-response-factor-mediated gene transcription in a Rho-dependent manner. Rho-mediated transcriptional activation induced by M(3) muscarinic acetylcholine and lysophosphatidic acid receptors was enhanced by p114-Rho-GEF, suggesting that the activity of this novel Rho-GEF, which is widely expressed in human tissues, can be controlled by G-protein-coupled receptors.
ErratumErratum to: Rho-speci¢c binding and guanine nucleotide exchange catalysis by KIAA0380, a Dbl family member (FEBS 22709) [FEBS Letters 459 (1999) 313^318]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.