We consider uniform random permutations of length n conditioned to have no cycle longer than n β with 0 < β < 1, in the limit of large n. Since in unconstrained uniform random permutations most of the indices are in cycles of macroscopic length, this is a singular conditioning in the limit. Nevertheless, we obtain a fairly complete picture about the cycle number distribution at various lengths. Depending on the scale at which cycle numbers are studied, our results include Poisson convergence, a central limit theorem, a shape theorem and two different functional central limit theorems.
We consider a system of self-avoiding polygons interacting through a potential that penalizes or rewards the number of mutual touchings and we provide an exact computation of the critical curve separating a regime of long polygons from a regime of localized polygons. Moreover, we prove the existence of a sub-region of the phase diagram where the self-avoiding polygons are space filling and we provide a non-trivial characterization of the regime where the polygon length admits uniformly bounded exponential moments.arXiv:1805.08517v3 [math.PR]
We consider Ewens random permutations of length n conditioned to have no cycle longer than n β with 0 < β < 1 and study the asymptotic behaviour as n → ∞. We obtain very precise information on the joint distribution of the lengths of the longest cycles; in particular we prove a functional limit theorem where the cumulative number of long cycles converges to a Poisson process in the suitable scaling. Furthermore, we prove convergence of the total variation distance between joint cycle counts and suitable independent Poisson random variables up to a signicantly larger maximal cycle length than previously known. Finally, we remove a superuous assumption from a central limit theorem for the total number of cycles proved in an earlier paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.