The action of tissue Transglutaminase (TGase) on specific protein-bound glutamine residues plays a critical role in numerous biological processes. Here we provide evidence for a new role of this enzyme in the common, HLA-DQ2 (and DQ8) associated enteropathy, celiac disease (CD). The intestinal inflammation in CD is precipitated by exposure to wheat gliadin in the diet and is associated with increased mucosal activity of TGase. This enzyme has also been identified as the main target for CD-associated anti-endomysium autoantibodies, and is known to accept gliadin as one of its few substrates. We have examined the possibility that TGase could be involved in modulating the reactivity of gliadin specific T cells. This could establish a link between previous reports of the role of TGase in CD and the prevailing view of CD as a T-cell mediated disorder. We found a specific effect of TGase on T-cell recognition of gliadin. This effect was limited to gliadin-specific T cells isolated from intestinal CD lesions. We demonstrate that TGase mediates its effect through an ordered and specific deamidation of gliadins. This deamidation creates an epitope that binds efficiently to DQ2 and is recognized by gut-derived T cells. Generation of epitopes by enzymatic modification is a new mechanism that may be relevant for breaking of tolerance and initiation of autoimmune disease.
SummaryCeliac disease (CD) is most probably an immunological disease, precipitated in susceptible individuals by ingestion of wheat gliadin and related proteins from other cereals. The disease shows a strong human HLA association predominantly to the c/s or trans encoded HLA-DQ(o~I*O5OI,fll*0201) (DQ2) heterodimer. T cell recognition of gliadin presented by this DQ heterodimer may thus be of immunopathogenic importance in CD. We therefore challenged small intestinal biopsies from adult CD patients on a gluten-free diet in vitro with gluten (containing both gliadin and other wheat proteins), and isolated activated CD25 + T cells. Polyclonal T cell lines and a panel of T cell clones recognizing gluten were established. They recognized the gliadin moiety of gluten, but not proteins from other cereals. Inhibition studies with anti-HLA antibodies demonstrated predominant antigen presentation by HLA-DQ molecules. The main antigen-presenting molecule was established to be the CD-associated DQ(oel*0501, fl1"0201) heterodimer. The gluten-reactive T cell clones were CD4 +, CD8-, and carried diverse combinations of T cell receptor (TCR) Vc~ and Vfl chains. The findings suggest preferential mucosal presentation of gluten-derived peptides by HLA-DQ(c~I*OSO1,BI*0201) in CD, which may explain the HLA association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.