People worldwide use SARS-CoV-2 (COVID-19) visualizations to make life and death decisions about pandemic risks. Understanding how these visualizations influence risk perceptions to improve pandemic communication is crucial. To examine how COVID-19 visualizations influence risk perception, we conducted two experiments online in October and December of 2020 (N = 2549) where we presented participants with 34 visualization techniques (available at the time of publication on the CDC’s website) of the same COVID-19 mortality data. We found that visualizing data using a cumulative scale consistently led to participants believing that they and others were at more risk than before viewing the visualizations. In contrast, visualizing the same data with a weekly incident scale led to variable changes in risk perceptions. Further, uncertainty forecast visualizations also affected risk perceptions, with visualizations showing six or more models increasing risk estimates more than the others tested. Differences between COVID-19 visualizations of the same data produce different risk perceptions, fundamentally changing viewers’ interpretation of information.
Fig. 1. Example stimuli and categorization used in the current study. Quantile dotplots (A) and density plots (B) visualize distributional information. Quantile dotplots also use frequency framing. Interval plots (C) showing 95% confidence intervals and text tables (D) showing 95% confidence intervals and a mean convey summary statistics. The mean plot (E) was used as a control, because it does not display uncertainty.
Making decisions with uncertainty is challenging for the general public, policymakers, and even highly trained scientists. Nevertheless, when faced with the need to respond to a potential hazard, people must make high-risk decisions with uncertainty. In some cases, people have to consider multiple hazards with various types of uncertainties. Multiple hazards can be interconnected by location, time, and/or environmental systems, and the hazards may interact, producing complex relationships among their associated uncertainties. The interaction between multiple hazards and their uncertainties can have nonlinear effects, where the resultant risk and uncertainty are greater than the sum of the risk and uncertainty associated with individual hazards. Effectively communicating the uncertainties related to such complicated systems should be a high priority because the frequency and variability of multiple hazard events due to climate change continue to increase. However, the communication of multiple hazard uncertainties and their interactions remains largely unexplored. The lack of practical guidance on conveying multiple hazard uncertainties is likely due in part to the field’s vast expanse, making it challenging to identify entry points. Here, we offer a perspective on three critical challenges related to uncertainty communication across various multiple hazard contexts to galvanize the research community. We advocate for systematic considerations of multiple hazard uncertainty communication that focus on trade-offs between complexity and factors, including mental effort, trust, and usability.
As uncertainty visualizations for general audiences become increasingly common, designers must understand the full impact of uncertainty communication techniques on viewers' decision processes. Prior work demonstrates mixed performance outcomes with respect to how individuals make decisions using various visual and textual depictions of uncertainty. Part of the inconsistency across findings may be due to an over-reliance on task accuracy, which cannot, on its own, provide a comprehensive understanding of how uncertainty visualization techniques support reasoning processes. In this work, we advance the debate surrounding the efficacy of modern 1D uncertainty visualizations by conducting converging quantitative and qualitative analyses of both the effort and strategies used by individuals when provided with quantile dotplots, density plots, interval plots, mean plots, and textual descriptions of uncertainty. We utilize two approaches for examining effort across uncertainty communication techniques: a measure of individual differences in working-memory capacity known as an operation span (OSPAN) task and self-reports of perceived workload via the NASA-TLX. The results reveal that both visualization methods and working-memory capacity impact participants' decisions. Specifically, quantile dotplots and density plots (i.e., distributional annotations) result in more accurate judgments than interval plots, textual descriptions of uncertainty, and mean plots (i.e., summary annotations). Additionally, participants' open-ended responses suggest that individuals viewing distributional annotations are more likely to employ a strategy that explicitly incorporates uncertainty into their judgments than those viewing summary annotations. When comparing quantile dotplots to density plots, this work finds that both methods are equally effective for low-working-memory individuals. However, for individuals with high-working-memory capacity, quantile dotplots evoke more accurate responses with less perceived effort. Given these results, we advocate for the inclusion of converging behavioral and subjective workload metrics in addition to accuracy performance to further disambiguate meaningful differences among visualization techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.